弥合预测鸿沟:用于中低收入国家可扩展和实时登革热监测的混合预警系统。

IF 2.5 3区 医学 Q2 PARASITOLOGY
Acta tropica Pub Date : 2025-09-01 Epub Date: 2025-08-05 DOI:10.1016/j.actatropica.2025.107765
Dang Anh Tuan, Pham Vu Nhat Uyen
{"title":"弥合预测鸿沟:用于中低收入国家可扩展和实时登革热监测的混合预警系统。","authors":"Dang Anh Tuan, Pham Vu Nhat Uyen","doi":"10.1016/j.actatropica.2025.107765","DOIUrl":null,"url":null,"abstract":"<p><p>The global resurgence of dengue presents an ongoing challenge for public health systems, particularly in low- and middle-income countries (LMICs) where conventional early warning systems (EWS) often suffer from reporting delays and under-detection. While AI-powered EWS offer superior accuracy, their reliance on dense data streams and advanced infrastructure limits their scalability in resource-limited contexts. This paper introduces a hybrid EWS architecture that strategically combines retrospective epidemiological data with selective real-time signals-such as climate variables and digital trends-within a modular machine learning framework. Drawing on case studies from Brazil, Malaysia, and Vietnam, we demonstrate how this architecture adapts to diverse data environments: integrating seroprevalence data to correct underreporting, enhancing zoning-based alerts with behavioral signals, and using climate predictors to overcome data fragmentation. Simulation results indicate that the hybrid model reduces outbreak response time from 7 to 14 days (traditional EWS) to 3-5 days and improves prediction accuracy to 85-90 %. These findings highlight the hybrid EWS as a context-sensitive, scalable solution that balances predictive performance with implementation feasibility-offering a viable pathway for LMICs to operationalize real-time dengue surveillance and proactive vector control.</p>","PeriodicalId":7240,"journal":{"name":"Acta tropica","volume":" ","pages":"107765"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging the predictive divide: A hybrid early warning system for scalable and real-time dengue surveillance in LMICs.\",\"authors\":\"Dang Anh Tuan, Pham Vu Nhat Uyen\",\"doi\":\"10.1016/j.actatropica.2025.107765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The global resurgence of dengue presents an ongoing challenge for public health systems, particularly in low- and middle-income countries (LMICs) where conventional early warning systems (EWS) often suffer from reporting delays and under-detection. While AI-powered EWS offer superior accuracy, their reliance on dense data streams and advanced infrastructure limits their scalability in resource-limited contexts. This paper introduces a hybrid EWS architecture that strategically combines retrospective epidemiological data with selective real-time signals-such as climate variables and digital trends-within a modular machine learning framework. Drawing on case studies from Brazil, Malaysia, and Vietnam, we demonstrate how this architecture adapts to diverse data environments: integrating seroprevalence data to correct underreporting, enhancing zoning-based alerts with behavioral signals, and using climate predictors to overcome data fragmentation. Simulation results indicate that the hybrid model reduces outbreak response time from 7 to 14 days (traditional EWS) to 3-5 days and improves prediction accuracy to 85-90 %. These findings highlight the hybrid EWS as a context-sensitive, scalable solution that balances predictive performance with implementation feasibility-offering a viable pathway for LMICs to operationalize real-time dengue surveillance and proactive vector control.</p>\",\"PeriodicalId\":7240,\"journal\":{\"name\":\"Acta tropica\",\"volume\":\" \",\"pages\":\"107765\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta tropica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actatropica.2025.107765\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta tropica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.actatropica.2025.107765","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

登革热在全球卷土重来对公共卫生系统构成了持续的挑战,特别是在低收入和中等收入国家,在这些国家,传统的早期预警系统往往存在报告延迟和检测不足的问题。虽然人工智能驱动的EWS提供了卓越的准确性,但它们对密集数据流和先进基础设施的依赖限制了它们在资源有限的环境下的可扩展性。本文介绍了一种混合EWS架构,该架构在模块化机器学习框架内战略性地将回顾性流行病学数据与选择性实时信号(如气候变量和数字趋势)相结合。根据巴西、马来西亚和越南的案例研究,我们展示了这种架构如何适应不同的数据环境:整合血清阳性率数据以纠正漏报,用行为信号增强基于分区的警报,并使用气候预测器克服数据碎片化。仿真结果表明,混合模型将爆发响应时间从7-14天(传统EWS)缩短至3-5天,预测准确率提高到85-90%。这些发现突出表明,混合EWS是一种环境敏感、可扩展的解决方案,能够平衡预测性能和实施可行性,为中低收入国家实施登革热实时监测和主动媒介控制提供了可行途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bridging the predictive divide: A hybrid early warning system for scalable and real-time dengue surveillance in LMICs.

The global resurgence of dengue presents an ongoing challenge for public health systems, particularly in low- and middle-income countries (LMICs) where conventional early warning systems (EWS) often suffer from reporting delays and under-detection. While AI-powered EWS offer superior accuracy, their reliance on dense data streams and advanced infrastructure limits their scalability in resource-limited contexts. This paper introduces a hybrid EWS architecture that strategically combines retrospective epidemiological data with selective real-time signals-such as climate variables and digital trends-within a modular machine learning framework. Drawing on case studies from Brazil, Malaysia, and Vietnam, we demonstrate how this architecture adapts to diverse data environments: integrating seroprevalence data to correct underreporting, enhancing zoning-based alerts with behavioral signals, and using climate predictors to overcome data fragmentation. Simulation results indicate that the hybrid model reduces outbreak response time from 7 to 14 days (traditional EWS) to 3-5 days and improves prediction accuracy to 85-90 %. These findings highlight the hybrid EWS as a context-sensitive, scalable solution that balances predictive performance with implementation feasibility-offering a viable pathway for LMICs to operationalize real-time dengue surveillance and proactive vector control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta tropica
Acta tropica 医学-寄生虫学
CiteScore
5.40
自引率
11.10%
发文量
383
审稿时长
37 days
期刊介绍: Acta Tropica, is an international journal on infectious diseases that covers public health sciences and biomedical research with particular emphasis on topics relevant to human and animal health in the tropics and the subtropics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信