鞍中心点附近产生的同斜轨道的可数序列。

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Inmaculada Baldomá, Marcel Guardia, Dmitry E. Pelinovsky
{"title":"鞍中心点附近产生的同斜轨道的可数序列。","authors":"Inmaculada Baldomá,&nbsp;Marcel Guardia,&nbsp;Dmitry E. Pelinovsky","doi":"10.1007/s00220-025-05381-8","DOIUrl":null,"url":null,"abstract":"<div><p>Exponential small splitting of separatrices in the singular perturbation theory leads generally to nonvanishing oscillations near a saddle–center point and to nonexistence of a true homoclinic orbit. It was conjectured long ago that the oscillations may vanish at a countable set of small parameter values if there exist a quadruplet of singularities in the complex analytic extension of the limiting homoclinic orbit. The present paper gives a rigorous proof of this conjecture for a particular fourth-order equation relevant to the traveling wave reduction of the modified Korteweg–de Vries equation with the fifth-order dispersion term.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316829/pdf/","citationCount":"0","resultStr":"{\"title\":\"On a Countable Sequence of Homoclinic Orbits Arising Near a Saddle–Center Point\",\"authors\":\"Inmaculada Baldomá,&nbsp;Marcel Guardia,&nbsp;Dmitry E. Pelinovsky\",\"doi\":\"10.1007/s00220-025-05381-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Exponential small splitting of separatrices in the singular perturbation theory leads generally to nonvanishing oscillations near a saddle–center point and to nonexistence of a true homoclinic orbit. It was conjectured long ago that the oscillations may vanish at a countable set of small parameter values if there exist a quadruplet of singularities in the complex analytic extension of the limiting homoclinic orbit. The present paper gives a rigorous proof of this conjecture for a particular fourth-order equation relevant to the traveling wave reduction of the modified Korteweg–de Vries equation with the fifth-order dispersion term.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 9\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316829/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05381-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05381-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

奇异摄动理论中分离矩阵的指数小分裂通常导致鞍中心点附近的非消失振荡和真同斜轨道的不存在。在极限同斜轨道的复解析扩展中,如果存在一个四重态奇点,那么振荡可能在一组可数的小参数值处消失。本文对一个特殊的四阶方程给出了这一猜想的严格证明,该方程与带有五阶色散项的修正Korteweg-de Vries方程的行波约简有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On a Countable Sequence of Homoclinic Orbits Arising Near a Saddle–Center Point

On a Countable Sequence of Homoclinic Orbits Arising Near a Saddle–Center Point

On a Countable Sequence of Homoclinic Orbits Arising Near a Saddle–Center Point

On a Countable Sequence of Homoclinic Orbits Arising Near a Saddle–Center Point

Exponential small splitting of separatrices in the singular perturbation theory leads generally to nonvanishing oscillations near a saddle–center point and to nonexistence of a true homoclinic orbit. It was conjectured long ago that the oscillations may vanish at a countable set of small parameter values if there exist a quadruplet of singularities in the complex analytic extension of the limiting homoclinic orbit. The present paper gives a rigorous proof of this conjecture for a particular fourth-order equation relevant to the traveling wave reduction of the modified Korteweg–de Vries equation with the fifth-order dispersion term.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信