李普希茨洛伦兹度量的霍金奇点定理。

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Matteo Calisti, Melanie Graf, Eduardo Hafemann, Michael Kunzinger, Roland Steinbauer
{"title":"李普希茨洛伦兹度量的霍金奇点定理。","authors":"Matteo Calisti,&nbsp;Melanie Graf,&nbsp;Eduardo Hafemann,&nbsp;Michael Kunzinger,&nbsp;Roland Steinbauer","doi":"10.1007/s00220-025-05380-9","DOIUrl":null,"url":null,"abstract":"<div><p>We prove Hawking’s singularity theorem for spacetime metrics of local Lipschitz regularity. The proof rests on (1) new estimates for the Ricci curvature of regularising smooth metrics that are based upon a quite general Friedrichs-type lemma and (2) the replacement of the usual focusing techniques for timelike geodesics—which in the absence of a classical ODE-theory for the initial value problem are no longer available—by a worldvolume estimate based on a segment-type inequality that allows one to control the volume of the set of points in a spacelike surface that possess long maximisers.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316818/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hawking’s Singularity Theorem for Lipschitz Lorentzian Metrics\",\"authors\":\"Matteo Calisti,&nbsp;Melanie Graf,&nbsp;Eduardo Hafemann,&nbsp;Michael Kunzinger,&nbsp;Roland Steinbauer\",\"doi\":\"10.1007/s00220-025-05380-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove Hawking’s singularity theorem for spacetime metrics of local Lipschitz regularity. The proof rests on (1) new estimates for the Ricci curvature of regularising smooth metrics that are based upon a quite general Friedrichs-type lemma and (2) the replacement of the usual focusing techniques for timelike geodesics—which in the absence of a classical ODE-theory for the initial value problem are no longer available—by a worldvolume estimate based on a segment-type inequality that allows one to control the volume of the set of points in a spacelike surface that possess long maximisers.\\n</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 9\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316818/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05380-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05380-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了局部Lipschitz正则时空度量的霍金奇点定理。证明基于(1)新规范的里奇曲率平滑估计指标,基于一个相当通用Friedrichs-type引理和(2)的替代通常的类时聚焦技术测地线在缺乏古典ODE-theory的初值问题不再提供worldvolume估计基于段类型不平等,允许一个控制体积的点集spacelike表面具有长创造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hawking’s Singularity Theorem for Lipschitz Lorentzian Metrics

We prove Hawking’s singularity theorem for spacetime metrics of local Lipschitz regularity. The proof rests on (1) new estimates for the Ricci curvature of regularising smooth metrics that are based upon a quite general Friedrichs-type lemma and (2) the replacement of the usual focusing techniques for timelike geodesics—which in the absence of a classical ODE-theory for the initial value problem are no longer available—by a worldvolume estimate based on a segment-type inequality that allows one to control the volume of the set of points in a spacelike surface that possess long maximisers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信