Adrien P. Genoud, Topu Saha, Joseph Torsiello, Ian Gatley, Benjamin P. Thomas
{"title":"基于激光雷达信号频率分析的无人机螺旋桨特性分析方法。","authors":"Adrien P. Genoud, Topu Saha, Joseph Torsiello, Ian Gatley, Benjamin P. Thomas","doi":"10.1007/s00340-025-08533-9","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid proliferation of commercial unmanned aerial vehicles (UAVs) poses growing security, safety, and privacy challenges. This paper presents a novel frequency-domain analysis methodology to extract mechanical signatures of UAVs using backscattered optical signals from drone propellers. Through both simulations and experimental validation, the feasibility of retrieving key mechanical signatures, including the propeller's rotational speed (RPM) and the number of blades, was demonstrated. These signatures are a first step towards the real-time identification of drone models and provide insights into drone’s flight behavior. The methodology, tested here with small toy drones, offers promise for real-world deployment of drone monitoring systems, complementing traditional detection techniques by operating in various atmospheric conditions. Additionally, harmonic and frequency peak analysis may allow for future improvements in trajectory tracking and payload detection. This work opens new possibilities for integrating lidar-based UAV characterization into both civilian and military airspace security frameworks.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"131 8","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313808/pdf/","citationCount":"0","resultStr":"{\"title\":\"Method for UAV propeller characterization using frequency analysis of Lidar signals\",\"authors\":\"Adrien P. Genoud, Topu Saha, Joseph Torsiello, Ian Gatley, Benjamin P. Thomas\",\"doi\":\"10.1007/s00340-025-08533-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rapid proliferation of commercial unmanned aerial vehicles (UAVs) poses growing security, safety, and privacy challenges. This paper presents a novel frequency-domain analysis methodology to extract mechanical signatures of UAVs using backscattered optical signals from drone propellers. Through both simulations and experimental validation, the feasibility of retrieving key mechanical signatures, including the propeller's rotational speed (RPM) and the number of blades, was demonstrated. These signatures are a first step towards the real-time identification of drone models and provide insights into drone’s flight behavior. The methodology, tested here with small toy drones, offers promise for real-world deployment of drone monitoring systems, complementing traditional detection techniques by operating in various atmospheric conditions. Additionally, harmonic and frequency peak analysis may allow for future improvements in trajectory tracking and payload detection. This work opens new possibilities for integrating lidar-based UAV characterization into both civilian and military airspace security frameworks.</p></div>\",\"PeriodicalId\":474,\"journal\":{\"name\":\"Applied Physics B\",\"volume\":\"131 8\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313808/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00340-025-08533-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-025-08533-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Method for UAV propeller characterization using frequency analysis of Lidar signals
The rapid proliferation of commercial unmanned aerial vehicles (UAVs) poses growing security, safety, and privacy challenges. This paper presents a novel frequency-domain analysis methodology to extract mechanical signatures of UAVs using backscattered optical signals from drone propellers. Through both simulations and experimental validation, the feasibility of retrieving key mechanical signatures, including the propeller's rotational speed (RPM) and the number of blades, was demonstrated. These signatures are a first step towards the real-time identification of drone models and provide insights into drone’s flight behavior. The methodology, tested here with small toy drones, offers promise for real-world deployment of drone monitoring systems, complementing traditional detection techniques by operating in various atmospheric conditions. Additionally, harmonic and frequency peak analysis may allow for future improvements in trajectory tracking and payload detection. This work opens new possibilities for integrating lidar-based UAV characterization into both civilian and military airspace security frameworks.
期刊介绍:
Features publication of experimental and theoretical investigations in applied physics
Offers invited reviews in addition to regular papers
Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more
94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again
Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field.
In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.