Mn2+取代对MnxFe3-xO4纳米粒子各向异性控制和磁热疗的影响。

IF 6.6 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Oscar F. Odio, Giuseppina Tommasini, F. J. Teran, Jesus G. Ovejero, Javier Rubín, María Moros and Susel Del Sol-Fernández
{"title":"Mn2+取代对MnxFe3-xO4纳米粒子各向异性控制和磁热疗的影响。","authors":"Oscar F. Odio, Giuseppina Tommasini, F. J. Teran, Jesus G. Ovejero, Javier Rubín, María Moros and Susel Del Sol-Fernández","doi":"10.1039/D5NH00254K","DOIUrl":null,"url":null,"abstract":"<p >Composition is a key parameter to effectively tune the magnetic anisotropy of magnetic nanoparticles, which in turn can modulate their structural–magnetic properties and final applications. The Mn<small><sup>2+</sup></small> content of manganese ferrite nanoparticles (Mn<small><sub><em>x</em></sub></small>Fe<small><sub>3−<em>x</em></sub></small>O<small><sub>4</sub></small>) deeply impacts their structure, anisotropy, magnetism, and their heating capacity. However, a direct correlation between Mn<small><sup>2+</sup></small> content, magnetic properties and heating efficiency is not yet clear. Herein, we report the synthesis of a wide range of Mn<small><sub><em>x</em></sub></small>Fe<small><sub>3−<em>x</em></sub></small>O<small><sub>4</sub></small> with <em>x</em> = 0.14 to 1.40, with similar polyhedral morphologies and sizes (13 to 15 nm). By varying the Mn<small><sup>2+</sup></small> content (in the range of <em>x</em> = 0.0 up to 0.70), we successfully tuned the effective anisotropy while maintaining saturation magnetization nearly constant. Highest Mn<small><sup>2+</sup></small> levels (<em>x</em> = 1.40) lead to structural changes and strain defects reflected in their poor saturation magnetization. Mn<small><sup>2+</sup></small> substitution is not uniform, instead promotes a compositional gradient across the MNPs, with the surface layers having a higher concentration of Mn<small><sup>2+</sup></small> than the core. The Mn<small><sup>2+</sup></small>-rich surface likely exhibits superparamagnetic (SPM) relaxation, while the core remains predominantly ferrimagnetic (FiM). Water transference results in cation leaching, promoting vacancies and changes in the local ferrite structure but with a minor impact on the magnetic properties compared with initial MNPs. We obtained the optimal Mn<small><sup>2+</sup></small> content that maximizes anisotropy toward improved specific loss power (SLP) values. The Néel relaxation mechanism is warranted regarding variable composition when sizes and shapes are maintained. Our detailed analysis provides a better understanding of the effect of Mn<small><sup>2+</sup></small> substitution on the heating efficiency through anisotropy modulation and straightforward guidance on optimizing MNP design for magnetic hyperthermia.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 10","pages":" 2486-2503"},"PeriodicalIF":6.6000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12319668/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling the Mn2+ substitution effect on the anisotropy control and magnetic hyperthermia of MnxFe3−xO4 nanoparticles†\",\"authors\":\"Oscar F. Odio, Giuseppina Tommasini, F. J. Teran, Jesus G. Ovejero, Javier Rubín, María Moros and Susel Del Sol-Fernández\",\"doi\":\"10.1039/D5NH00254K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Composition is a key parameter to effectively tune the magnetic anisotropy of magnetic nanoparticles, which in turn can modulate their structural–magnetic properties and final applications. The Mn<small><sup>2+</sup></small> content of manganese ferrite nanoparticles (Mn<small><sub><em>x</em></sub></small>Fe<small><sub>3−<em>x</em></sub></small>O<small><sub>4</sub></small>) deeply impacts their structure, anisotropy, magnetism, and their heating capacity. However, a direct correlation between Mn<small><sup>2+</sup></small> content, magnetic properties and heating efficiency is not yet clear. Herein, we report the synthesis of a wide range of Mn<small><sub><em>x</em></sub></small>Fe<small><sub>3−<em>x</em></sub></small>O<small><sub>4</sub></small> with <em>x</em> = 0.14 to 1.40, with similar polyhedral morphologies and sizes (13 to 15 nm). By varying the Mn<small><sup>2+</sup></small> content (in the range of <em>x</em> = 0.0 up to 0.70), we successfully tuned the effective anisotropy while maintaining saturation magnetization nearly constant. Highest Mn<small><sup>2+</sup></small> levels (<em>x</em> = 1.40) lead to structural changes and strain defects reflected in their poor saturation magnetization. Mn<small><sup>2+</sup></small> substitution is not uniform, instead promotes a compositional gradient across the MNPs, with the surface layers having a higher concentration of Mn<small><sup>2+</sup></small> than the core. The Mn<small><sup>2+</sup></small>-rich surface likely exhibits superparamagnetic (SPM) relaxation, while the core remains predominantly ferrimagnetic (FiM). Water transference results in cation leaching, promoting vacancies and changes in the local ferrite structure but with a minor impact on the magnetic properties compared with initial MNPs. We obtained the optimal Mn<small><sup>2+</sup></small> content that maximizes anisotropy toward improved specific loss power (SLP) values. The Néel relaxation mechanism is warranted regarding variable composition when sizes and shapes are maintained. Our detailed analysis provides a better understanding of the effect of Mn<small><sup>2+</sup></small> substitution on the heating efficiency through anisotropy modulation and straightforward guidance on optimizing MNP design for magnetic hyperthermia.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" 10\",\"pages\":\" 2486-2503\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12319668/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nh/d5nh00254k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nh/d5nh00254k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

组成是有效调节磁性纳米颗粒磁性各向异性的关键参数,这反过来又可以调节其结构磁性能和最终应用。铁酸锰纳米颗粒(MnxFe3-xO4)的Mn2+含量对其结构、各向异性、磁性和加热性能有较大影响。然而,Mn2+含量、磁性能和加热效率之间的直接关系尚不清楚。在这里,我们报道了广泛范围的MnxFe3-xO4的合成,x = 0.14至1.40,具有相似的多面体形态和尺寸(13至15 nm)。通过改变Mn2+的含量(在x = 0.0到0.70的范围内),我们成功地调整了有效的各向异性,同时保持饱和磁化几乎不变。最高的Mn2+水平(x = 1.40)导致结构变化和应变缺陷,反映在其较差的饱和磁化。Mn2+取代不是均匀的,而是促进了MNPs之间的成分梯度,表层的Mn2+浓度高于核心。富Mn2+的表面可能表现出超顺磁(SPM)弛豫,而核心仍然主要是铁磁(FiM)。水的转移导致阳离子浸出,促进空位和局部铁氧体结构的变化,但与初始MNPs相比,对磁性能的影响较小。我们获得了最佳的Mn2+含量,使各向异性最大化,从而提高了比损耗功率(SLP)值。当尺寸和形状保持不变时,对于可变成分,有必要采用nsamel松弛机制。我们的详细分析为通过各向异性调制Mn2+取代对加热效率的影响提供了更好的理解,并为优化磁热疗MNP设计提供了直接指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unraveling the Mn2+ substitution effect on the anisotropy control and magnetic hyperthermia of MnxFe3−xO4 nanoparticles†

Unraveling the Mn2+ substitution effect on the anisotropy control and magnetic hyperthermia of MnxFe3−xO4 nanoparticles†

Composition is a key parameter to effectively tune the magnetic anisotropy of magnetic nanoparticles, which in turn can modulate their structural–magnetic properties and final applications. The Mn2+ content of manganese ferrite nanoparticles (MnxFe3−xO4) deeply impacts their structure, anisotropy, magnetism, and their heating capacity. However, a direct correlation between Mn2+ content, magnetic properties and heating efficiency is not yet clear. Herein, we report the synthesis of a wide range of MnxFe3−xO4 with x = 0.14 to 1.40, with similar polyhedral morphologies and sizes (13 to 15 nm). By varying the Mn2+ content (in the range of x = 0.0 up to 0.70), we successfully tuned the effective anisotropy while maintaining saturation magnetization nearly constant. Highest Mn2+ levels (x = 1.40) lead to structural changes and strain defects reflected in their poor saturation magnetization. Mn2+ substitution is not uniform, instead promotes a compositional gradient across the MNPs, with the surface layers having a higher concentration of Mn2+ than the core. The Mn2+-rich surface likely exhibits superparamagnetic (SPM) relaxation, while the core remains predominantly ferrimagnetic (FiM). Water transference results in cation leaching, promoting vacancies and changes in the local ferrite structure but with a minor impact on the magnetic properties compared with initial MNPs. We obtained the optimal Mn2+ content that maximizes anisotropy toward improved specific loss power (SLP) values. The Néel relaxation mechanism is warranted regarding variable composition when sizes and shapes are maintained. Our detailed analysis provides a better understanding of the effect of Mn2+ substitution on the heating efficiency through anisotropy modulation and straightforward guidance on optimizing MNP design for magnetic hyperthermia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信