{"title":"基于镧系发光纳米粒子持久发射响应的光物理结构照明测速。","authors":"Haichun Liu and Jerker Widengren","doi":"10.1039/D5NH00395D","DOIUrl":null,"url":null,"abstract":"<p >This study introduces the concept of photophysical structured illumination velocimetry (PP-SIV), verified through comprehensive numerical simulations. PP-SIV can capture two-dimensional (2D) flow velocity fields from a single snapshot image of the emission pattern from luminescent probes, leveraging the suitable photodynamics of the probes and using the applied excitation field pattern as reference. By eliminating the need for any beam or sample scan, PP-SIV has the potential to significantly accelerate the data acquisition process required for velocity field imaging. Furthermore, with excitation patterns applied at different depths, three-dimensional (3D) flow imaging can be potentially achieved. We propose lanthanide-based upconversion nanoparticles (UCNPs), particularly those capable of both absorbing and emitting within the highly biocompatible and transparent NIR-II window (1000–1700 nm), as promising probe candidates for implementing PP-SIV. This concept holds significant potential to pave the way for rapid, three-dimensional (3D) blood flow imaging at sufficient speeds for real-time monitoring of hemodynamic events in the brain.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 10","pages":" 2504-2517"},"PeriodicalIF":6.6000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/nh/d5nh00395d?page=search","citationCount":"0","resultStr":"{\"title\":\"Photophysical structured illumination velocimetry based on the long-lasting emission response of lanthanide luminescent nanoparticles†\",\"authors\":\"Haichun Liu and Jerker Widengren\",\"doi\":\"10.1039/D5NH00395D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study introduces the concept of photophysical structured illumination velocimetry (PP-SIV), verified through comprehensive numerical simulations. PP-SIV can capture two-dimensional (2D) flow velocity fields from a single snapshot image of the emission pattern from luminescent probes, leveraging the suitable photodynamics of the probes and using the applied excitation field pattern as reference. By eliminating the need for any beam or sample scan, PP-SIV has the potential to significantly accelerate the data acquisition process required for velocity field imaging. Furthermore, with excitation patterns applied at different depths, three-dimensional (3D) flow imaging can be potentially achieved. We propose lanthanide-based upconversion nanoparticles (UCNPs), particularly those capable of both absorbing and emitting within the highly biocompatible and transparent NIR-II window (1000–1700 nm), as promising probe candidates for implementing PP-SIV. This concept holds significant potential to pave the way for rapid, three-dimensional (3D) blood flow imaging at sufficient speeds for real-time monitoring of hemodynamic events in the brain.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" 10\",\"pages\":\" 2504-2517\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/nh/d5nh00395d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nh/d5nh00395d\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nh/d5nh00395d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Photophysical structured illumination velocimetry based on the long-lasting emission response of lanthanide luminescent nanoparticles†
This study introduces the concept of photophysical structured illumination velocimetry (PP-SIV), verified through comprehensive numerical simulations. PP-SIV can capture two-dimensional (2D) flow velocity fields from a single snapshot image of the emission pattern from luminescent probes, leveraging the suitable photodynamics of the probes and using the applied excitation field pattern as reference. By eliminating the need for any beam or sample scan, PP-SIV has the potential to significantly accelerate the data acquisition process required for velocity field imaging. Furthermore, with excitation patterns applied at different depths, three-dimensional (3D) flow imaging can be potentially achieved. We propose lanthanide-based upconversion nanoparticles (UCNPs), particularly those capable of both absorbing and emitting within the highly biocompatible and transparent NIR-II window (1000–1700 nm), as promising probe candidates for implementing PP-SIV. This concept holds significant potential to pave the way for rapid, three-dimensional (3D) blood flow imaging at sufficient speeds for real-time monitoring of hemodynamic events in the brain.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.