从农业废弃物中提取的石墨化生物炭通过电导率驱动的直接种间电子转移促进甲烷生成。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Caiyun Yang, Zhen Liu, Weiguo Liu, Yuxin Qiu, Shuai Zhang, Xinke Zhang, Mengyi Wang, Heng Wu, Hongyi Lyu, Jinzhi Huang, Jia Liu, Yirong Wang, Siying He, Dongze Gu, Xiaohui Guo, Xuanmin Yang, Teng Xie, Heyu Chen, Yiqing Yao
{"title":"从农业废弃物中提取的石墨化生物炭通过电导率驱动的直接种间电子转移促进甲烷生成。","authors":"Caiyun Yang, Zhen Liu, Weiguo Liu, Yuxin Qiu, Shuai Zhang, Xinke Zhang, Mengyi Wang, Heng Wu, Hongyi Lyu, Jinzhi Huang, Jia Liu, Yirong Wang, Siying He, Dongze Gu, Xiaohui Guo, Xuanmin Yang, Teng Xie, Heyu Chen, Yiqing Yao","doi":"10.1002/advs.202508739","DOIUrl":null,"url":null,"abstract":"<p><p>Biochar has emerged as a promising conductor for facilitating direct interspecies electron transfer (DIET) in anaerobic digestion (AD), yet the mechanisms linking its structural features to methanogenic performance remain unclear. Here, how feedstock type and pyrolysis conditions modulate biochar conductivity and consequently shape methanogenic pathways is investigated. Using straw, wood, and nutshell-derived biochars, nutshell biochar pyrolyzed at 550 °C(CC550) is demonstrated to achieve the highest methane yield, enhancing production by 59% compared to the control and outperforming straw and wood-based biochars by 12% and 5% respectively. Graphitization analysis confirms that high electrical conductivity is key to accelerating methanogenesis. Metagenomic profiling reveals that CC550 enriches cellulose-degrading bacteria and DIET-associated taxa, while upregulating genes related to pili and cytochrome c expression, promoting acetoclastic methanogenesis through enhanced electron flow. These findings highlight the role of graphitic biochar as a metabolic modulator in AD and offer insights for engineering carbon materials to optimize bioenergy recovery from organic waste.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e08739"},"PeriodicalIF":14.1000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphitized Biochar Derived from Agricultural Wastes Enhances Methanogenesis via Conductivity-Driven Direct Interspecies Electron Transfer.\",\"authors\":\"Caiyun Yang, Zhen Liu, Weiguo Liu, Yuxin Qiu, Shuai Zhang, Xinke Zhang, Mengyi Wang, Heng Wu, Hongyi Lyu, Jinzhi Huang, Jia Liu, Yirong Wang, Siying He, Dongze Gu, Xiaohui Guo, Xuanmin Yang, Teng Xie, Heyu Chen, Yiqing Yao\",\"doi\":\"10.1002/advs.202508739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biochar has emerged as a promising conductor for facilitating direct interspecies electron transfer (DIET) in anaerobic digestion (AD), yet the mechanisms linking its structural features to methanogenic performance remain unclear. Here, how feedstock type and pyrolysis conditions modulate biochar conductivity and consequently shape methanogenic pathways is investigated. Using straw, wood, and nutshell-derived biochars, nutshell biochar pyrolyzed at 550 °C(CC550) is demonstrated to achieve the highest methane yield, enhancing production by 59% compared to the control and outperforming straw and wood-based biochars by 12% and 5% respectively. Graphitization analysis confirms that high electrical conductivity is key to accelerating methanogenesis. Metagenomic profiling reveals that CC550 enriches cellulose-degrading bacteria and DIET-associated taxa, while upregulating genes related to pili and cytochrome c expression, promoting acetoclastic methanogenesis through enhanced electron flow. These findings highlight the role of graphitic biochar as a metabolic modulator in AD and offer insights for engineering carbon materials to optimize bioenergy recovery from organic waste.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e08739\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202508739\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202508739","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

生物炭已成为促进厌氧消化(AD)中直接种间电子转移(DIET)的有前途的导体,但其结构特征与产甲烷性能之间的联系机制尚不清楚。在这里,原料类型和热解条件如何调节生物炭的导电性,从而形成甲烷生成途径进行了研究。使用秸秆、木材和坚果壳生物炭,在550°C(CC550)下热解的果壳生物炭被证明可以实现最高的甲烷产量,与对照相比,产量提高了59%,比秸秆和木材生物炭分别高出12%和5%。石墨化分析证实,高导电性是加速甲烷生成的关键。宏基因组分析显示,CC550丰富纤维素降解细菌和diet相关分类群,同时上调毛和细胞色素c相关基因的表达,通过增强电子流促进丙酮裂解产甲烷。这些发现强调了石墨生物炭在AD中作为代谢调节剂的作用,并为优化有机废物生物能源回收的工程碳材料提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphitized Biochar Derived from Agricultural Wastes Enhances Methanogenesis via Conductivity-Driven Direct Interspecies Electron Transfer.

Biochar has emerged as a promising conductor for facilitating direct interspecies electron transfer (DIET) in anaerobic digestion (AD), yet the mechanisms linking its structural features to methanogenic performance remain unclear. Here, how feedstock type and pyrolysis conditions modulate biochar conductivity and consequently shape methanogenic pathways is investigated. Using straw, wood, and nutshell-derived biochars, nutshell biochar pyrolyzed at 550 °C(CC550) is demonstrated to achieve the highest methane yield, enhancing production by 59% compared to the control and outperforming straw and wood-based biochars by 12% and 5% respectively. Graphitization analysis confirms that high electrical conductivity is key to accelerating methanogenesis. Metagenomic profiling reveals that CC550 enriches cellulose-degrading bacteria and DIET-associated taxa, while upregulating genes related to pili and cytochrome c expression, promoting acetoclastic methanogenesis through enhanced electron flow. These findings highlight the role of graphitic biochar as a metabolic modulator in AD and offer insights for engineering carbon materials to optimize bioenergy recovery from organic waste.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信