环境温度作用下天然橡胶疲劳寿命预测的物理信息神经网络模型

IF 3.2 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Yujia Liu, Wen-Bin Shangguan, Xiangnan Liu, Xuepeng Qian
{"title":"环境温度作用下天然橡胶疲劳寿命预测的物理信息神经网络模型","authors":"Yujia Liu,&nbsp;Wen-Bin Shangguan,&nbsp;Xiangnan Liu,&nbsp;Xuepeng Qian","doi":"10.1111/ffe.70012","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study develops a physics-informed neural network (PINN) model combining physical principles and data-driven efficiency to predict natural rubber (NR) fatigue life under varying temperatures. The proposed model utilizes fatigue damage parameters and environmental temperature as input variables, while the relative error between the measured fatigue life and the fatigue life predicted by the physical model serves as the output variable. Using experimental fatigue test data under varying environmental temperatures, the predictive performance of the physical model, BP neural network model, and PINN model was evaluated. The results demonstrate that the PINN model outperforms existing predictive approaches, with its predictions consistently falling within 1.5 times the dispersion band of the measured values. Furthermore, a partial sensitivity analysis was conducted based on the connection weights of the PINN model and the Garson equation, quantifying the relative influence of the input variables on the predicted fatigue life.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 9","pages":"3829-3838"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-Informed Neural Network Model for Predicting the Fatigue Life of Natural Rubber Under Ambient Temperature Effects\",\"authors\":\"Yujia Liu,&nbsp;Wen-Bin Shangguan,&nbsp;Xiangnan Liu,&nbsp;Xuepeng Qian\",\"doi\":\"10.1111/ffe.70012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study develops a physics-informed neural network (PINN) model combining physical principles and data-driven efficiency to predict natural rubber (NR) fatigue life under varying temperatures. The proposed model utilizes fatigue damage parameters and environmental temperature as input variables, while the relative error between the measured fatigue life and the fatigue life predicted by the physical model serves as the output variable. Using experimental fatigue test data under varying environmental temperatures, the predictive performance of the physical model, BP neural network model, and PINN model was evaluated. The results demonstrate that the PINN model outperforms existing predictive approaches, with its predictions consistently falling within 1.5 times the dispersion band of the measured values. Furthermore, a partial sensitivity analysis was conducted based on the connection weights of the PINN model and the Garson equation, quantifying the relative influence of the input variables on the predicted fatigue life.</p>\\n </div>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"48 9\",\"pages\":\"3829-3838\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.70012\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.70012","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发了一种物理信息神经网络(PINN)模型,结合物理原理和数据驱动效率来预测不同温度下天然橡胶(NR)的疲劳寿命。该模型以疲劳损伤参数和环境温度作为输入变量,以疲劳寿命实测值与物理模型预测疲劳寿命的相对误差作为输出变量。利用不同环境温度下的疲劳试验数据,对物理模型、BP神经网络模型和PINN模型的预测性能进行了评价。结果表明,PINN模型优于现有的预测方法,其预测结果始终落在实测值色散带的1.5倍以内。基于PINN模型与Garson方程的连接权值进行了部分灵敏度分析,量化了输入变量对预测疲劳寿命的相对影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics-Informed Neural Network Model for Predicting the Fatigue Life of Natural Rubber Under Ambient Temperature Effects

This study develops a physics-informed neural network (PINN) model combining physical principles and data-driven efficiency to predict natural rubber (NR) fatigue life under varying temperatures. The proposed model utilizes fatigue damage parameters and environmental temperature as input variables, while the relative error between the measured fatigue life and the fatigue life predicted by the physical model serves as the output variable. Using experimental fatigue test data under varying environmental temperatures, the predictive performance of the physical model, BP neural network model, and PINN model was evaluated. The results demonstrate that the PINN model outperforms existing predictive approaches, with its predictions consistently falling within 1.5 times the dispersion band of the measured values. Furthermore, a partial sensitivity analysis was conducted based on the connection weights of the PINN model and the Garson equation, quantifying the relative influence of the input variables on the predicted fatigue life.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信