花岗岩断裂演化与细观损伤:真三轴应力下的宏观细观本构模型

IF 3.2 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Li Qian, Enlong Liu, Ru Zhang, Jianhai Zhang, Tianzhi Yao, Gaofeng Ma, Xi Lu
{"title":"花岗岩断裂演化与细观损伤:真三轴应力下的宏观细观本构模型","authors":"Li Qian,&nbsp;Enlong Liu,&nbsp;Ru Zhang,&nbsp;Jianhai Zhang,&nbsp;Tianzhi Yao,&nbsp;Gaofeng Ma,&nbsp;Xi Lu","doi":"10.1111/ffe.70015","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study develops a macro–mesoscopic constitutive model to investigate fracture evolution in granite under true triaxial stress. Granite is modeled as a binary composite of bonded and frictional media, with microcrack propagation driving transitions between phases. Mesoscopic flaw evolution is tracked using CT scanning, enabling quantification of flaw volume and distribution during loading. A homogenization-based framework links mesoscale damage to nonlinear macroscopic behavior, explicitly capturing the influence of intermediate principal stress. A novel parameter, the flaw closure degree, is introduced to characterize compaction, providing a direct indicator of internal damage. The model accurately reproduces stress–strain responses and failure modes observed in tests, overcoming the limitations of phenomenological approaches. By incorporating fracture mechanics and internal flaw dynamics, this work offers a predictive tool for assessing structural integrity in brittle rock systems subjected to complex stress paths.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 9","pages":"3980-3998"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fracture Evolution and Mesoscopic Damage in Granite: A Macro–Mesoscopic Constitutive Model Under True Triaxial Stress\",\"authors\":\"Li Qian,&nbsp;Enlong Liu,&nbsp;Ru Zhang,&nbsp;Jianhai Zhang,&nbsp;Tianzhi Yao,&nbsp;Gaofeng Ma,&nbsp;Xi Lu\",\"doi\":\"10.1111/ffe.70015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study develops a macro–mesoscopic constitutive model to investigate fracture evolution in granite under true triaxial stress. Granite is modeled as a binary composite of bonded and frictional media, with microcrack propagation driving transitions between phases. Mesoscopic flaw evolution is tracked using CT scanning, enabling quantification of flaw volume and distribution during loading. A homogenization-based framework links mesoscale damage to nonlinear macroscopic behavior, explicitly capturing the influence of intermediate principal stress. A novel parameter, the flaw closure degree, is introduced to characterize compaction, providing a direct indicator of internal damage. The model accurately reproduces stress–strain responses and failure modes observed in tests, overcoming the limitations of phenomenological approaches. By incorporating fracture mechanics and internal flaw dynamics, this work offers a predictive tool for assessing structural integrity in brittle rock systems subjected to complex stress paths.</p>\\n </div>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"48 9\",\"pages\":\"3980-3998\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.70015\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.70015","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了一个宏观细观本构模型来研究真三轴应力作用下花岗岩的断裂演化。花岗岩被建模为粘结介质和摩擦介质的二元复合材料,微裂纹扩展驱动相间转变。使用CT扫描跟踪细观缺陷演变,可以量化加载过程中的缺陷体积和分布。基于均质化的框架将中尺度损伤与非线性宏观行为联系起来,明确捕获了中间主应力的影响。引入了一个新的参数,缺陷闭合度来表征压实,提供了内部损伤的直接指标。该模型准确再现了试验中观察到的应力-应变响应和破坏模式,克服了现象学方法的局限性。通过结合断裂力学和内部缺陷动力学,这项工作为评估脆性岩石系统在复杂应力路径下的结构完整性提供了一种预测工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fracture Evolution and Mesoscopic Damage in Granite: A Macro–Mesoscopic Constitutive Model Under True Triaxial Stress

This study develops a macro–mesoscopic constitutive model to investigate fracture evolution in granite under true triaxial stress. Granite is modeled as a binary composite of bonded and frictional media, with microcrack propagation driving transitions between phases. Mesoscopic flaw evolution is tracked using CT scanning, enabling quantification of flaw volume and distribution during loading. A homogenization-based framework links mesoscale damage to nonlinear macroscopic behavior, explicitly capturing the influence of intermediate principal stress. A novel parameter, the flaw closure degree, is introduced to characterize compaction, providing a direct indicator of internal damage. The model accurately reproduces stress–strain responses and failure modes observed in tests, overcoming the limitations of phenomenological approaches. By incorporating fracture mechanics and internal flaw dynamics, this work offers a predictive tool for assessing structural integrity in brittle rock systems subjected to complex stress paths.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信