基于临界平面本征损伤耗散的多轴高周疲劳寿命预测模型

IF 3.2 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Zhongkai Ren, Lixin Liu, Haoran Li, Wei Xu, Peng Chen, Tao Wang
{"title":"基于临界平面本征损伤耗散的多轴高周疲劳寿命预测模型","authors":"Zhongkai Ren,&nbsp;Lixin Liu,&nbsp;Haoran Li,&nbsp;Wei Xu,&nbsp;Peng Chen,&nbsp;Tao Wang","doi":"10.1111/ffe.70003","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The critical plane approach identifies the crack initiation plane and propagation directions, whereas intrinsic damage dissipation quantifies energy dissipation directly correlated with fatigue damage. This study proposes a multiaxial high-cycle fatigue (HCF) failure criterion and a life prediction model by combining both theories and explicitly incorporating mean stress effects. The proposed criterion employs four critical plane parameters: maximum shear stress, shear stress amplitude, maximum normal stress, and normal stress amplitude. This methodology demonstrates clear physical significance. Validation against experimental datasets demonstrates close agreement between model predictions and empirical results in both fatigue limit determination and life estimation. Comparative evaluations against classic and recent criteria reveal statistically superior predictive accuracy of the proposed criterion. The method shows its promising potential as a tool for multiaxial HCF engineering analysis.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 9","pages":"3936-3949"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Multiaxial High-Cycle Fatigue Life Prediction Model Based on Critical Plane-Intrinsic Damage Dissipation\",\"authors\":\"Zhongkai Ren,&nbsp;Lixin Liu,&nbsp;Haoran Li,&nbsp;Wei Xu,&nbsp;Peng Chen,&nbsp;Tao Wang\",\"doi\":\"10.1111/ffe.70003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The critical plane approach identifies the crack initiation plane and propagation directions, whereas intrinsic damage dissipation quantifies energy dissipation directly correlated with fatigue damage. This study proposes a multiaxial high-cycle fatigue (HCF) failure criterion and a life prediction model by combining both theories and explicitly incorporating mean stress effects. The proposed criterion employs four critical plane parameters: maximum shear stress, shear stress amplitude, maximum normal stress, and normal stress amplitude. This methodology demonstrates clear physical significance. Validation against experimental datasets demonstrates close agreement between model predictions and empirical results in both fatigue limit determination and life estimation. Comparative evaluations against classic and recent criteria reveal statistically superior predictive accuracy of the proposed criterion. The method shows its promising potential as a tool for multiaxial HCF engineering analysis.</p>\\n </div>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"48 9\",\"pages\":\"3936-3949\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.70003\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.70003","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

临界面法识别裂纹起裂面和扩展方向,而本禀损伤耗散法量化与疲劳损伤直接相关的能量耗散。本文将多轴高周疲劳失效准则与寿命预测模型相结合,明确地考虑了平均应力效应。该准则采用四个关键平面参数:最大剪应力、剪应力幅值、最大正应力和正应力幅值。这种方法显示出明显的物理意义。对实验数据集的验证表明,在疲劳极限确定和寿命估计方面,模型预测与经验结果之间存在密切的一致性。对经典和最新标准的比较评估揭示了所提出标准的统计上优越的预测准确性。该方法作为多轴HCF工程分析工具具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Multiaxial High-Cycle Fatigue Life Prediction Model Based on Critical Plane-Intrinsic Damage Dissipation

The critical plane approach identifies the crack initiation plane and propagation directions, whereas intrinsic damage dissipation quantifies energy dissipation directly correlated with fatigue damage. This study proposes a multiaxial high-cycle fatigue (HCF) failure criterion and a life prediction model by combining both theories and explicitly incorporating mean stress effects. The proposed criterion employs four critical plane parameters: maximum shear stress, shear stress amplitude, maximum normal stress, and normal stress amplitude. This methodology demonstrates clear physical significance. Validation against experimental datasets demonstrates close agreement between model predictions and empirical results in both fatigue limit determination and life estimation. Comparative evaluations against classic and recent criteria reveal statistically superior predictive accuracy of the proposed criterion. The method shows its promising potential as a tool for multiaxial HCF engineering analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信