Jae-Moon Jeong, Jingyao Dai, Luiz Acauan, Kwang Il Jeong, Jeonyoon Lee, Carina Xiaochen Li, Hyunsoo Hong, Brian L. Wardle, Seong Su Kim
{"title":"对准碳纳米管聚合物纳米复合双极板技术用于钒氧化还原液流电池","authors":"Jae-Moon Jeong, Jingyao Dai, Luiz Acauan, Kwang Il Jeong, Jeonyoon Lee, Carina Xiaochen Li, Hyunsoo Hong, Brian L. Wardle, Seong Su Kim","doi":"10.1002/eem2.70030","DOIUrl":null,"url":null,"abstract":"<p>Bipolar plates (BPs) are essential multifunctional components in vanadium redox flow batteries (VRFBs) that require excellent electrical conductivity, low permeability, and strong solid support for the stack. However, conventional BPs are based on graphite sheets, which provide mechanical properties and corrosion resistance but have limitations in terms of electrical conductivity. Although carbon nanotubes (CNTs) have excellent properties, CNT composites with low CNT volume fractions (10–20%) have increased electrolyte permeability and limited electrical conductivity improvement, resulting in low durability and efficiency for VRFBs. This study proposes a novel concept of horizontally aligned CNT nanocomposite bipolar plate (HACN-BP) to address these issues. The HACN-BPs feature an optimized conduction path with a CNT volume fraction of 59%, resulting in reduced manufacturing time while demonstrating superior conductivity and permeability compared to conventional BPs. Furthermore, integrated HACN-BP mitigates ohmic loss that occurs in the BPs, thereby mitigating the potential drop by 40%. Therefore, the utilization of HACN-BP shows superior performance compared to recent studies, a substantial improvement of more than 6% in energy efficiency and 14% in capacity over conventional BP.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 5","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70030","citationCount":"0","resultStr":"{\"title\":\"Aligned Carbon Nanotube Polymer Nanocomposite Bipolar Plates Technology for Vanadium Redox Flow Batteries\",\"authors\":\"Jae-Moon Jeong, Jingyao Dai, Luiz Acauan, Kwang Il Jeong, Jeonyoon Lee, Carina Xiaochen Li, Hyunsoo Hong, Brian L. Wardle, Seong Su Kim\",\"doi\":\"10.1002/eem2.70030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bipolar plates (BPs) are essential multifunctional components in vanadium redox flow batteries (VRFBs) that require excellent electrical conductivity, low permeability, and strong solid support for the stack. However, conventional BPs are based on graphite sheets, which provide mechanical properties and corrosion resistance but have limitations in terms of electrical conductivity. Although carbon nanotubes (CNTs) have excellent properties, CNT composites with low CNT volume fractions (10–20%) have increased electrolyte permeability and limited electrical conductivity improvement, resulting in low durability and efficiency for VRFBs. This study proposes a novel concept of horizontally aligned CNT nanocomposite bipolar plate (HACN-BP) to address these issues. The HACN-BPs feature an optimized conduction path with a CNT volume fraction of 59%, resulting in reduced manufacturing time while demonstrating superior conductivity and permeability compared to conventional BPs. Furthermore, integrated HACN-BP mitigates ohmic loss that occurs in the BPs, thereby mitigating the potential drop by 40%. Therefore, the utilization of HACN-BP shows superior performance compared to recent studies, a substantial improvement of more than 6% in energy efficiency and 14% in capacity over conventional BP.</p>\",\"PeriodicalId\":11554,\"journal\":{\"name\":\"Energy & Environmental Materials\",\"volume\":\"8 5\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70030\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eem2.70030\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.70030","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Bipolar plates (BPs) are essential multifunctional components in vanadium redox flow batteries (VRFBs) that require excellent electrical conductivity, low permeability, and strong solid support for the stack. However, conventional BPs are based on graphite sheets, which provide mechanical properties and corrosion resistance but have limitations in terms of electrical conductivity. Although carbon nanotubes (CNTs) have excellent properties, CNT composites with low CNT volume fractions (10–20%) have increased electrolyte permeability and limited electrical conductivity improvement, resulting in low durability and efficiency for VRFBs. This study proposes a novel concept of horizontally aligned CNT nanocomposite bipolar plate (HACN-BP) to address these issues. The HACN-BPs feature an optimized conduction path with a CNT volume fraction of 59%, resulting in reduced manufacturing time while demonstrating superior conductivity and permeability compared to conventional BPs. Furthermore, integrated HACN-BP mitigates ohmic loss that occurs in the BPs, thereby mitigating the potential drop by 40%. Therefore, the utilization of HACN-BP shows superior performance compared to recent studies, a substantial improvement of more than 6% in energy efficiency and 14% in capacity over conventional BP.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.