Ba0.5Sr0.5TiO3中间层实现固态-液态混合锂金属电池的超稳定性能

IF 14.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhen Chen, Yang Wang, Kepin Zhu, Ziqi Zhao, Xian-Ao Li, Yixin Wu, Xinwei Dou, Minghua Chen, Chuying Ouyang
{"title":"Ba0.5Sr0.5TiO3中间层实现固态-液态混合锂金属电池的超稳定性能","authors":"Zhen Chen,&nbsp;Yang Wang,&nbsp;Kepin Zhu,&nbsp;Ziqi Zhao,&nbsp;Xian-Ao Li,&nbsp;Yixin Wu,&nbsp;Xinwei Dou,&nbsp;Minghua Chen,&nbsp;Chuying Ouyang","doi":"10.1002/eem2.70018","DOIUrl":null,"url":null,"abstract":"<p>Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub> (LATP) is a promising solid-state electrolyte for next-generation solid-state lithium metal batteries, offering high ionic conductivity, superior air stability, and low cost. However, its practical application is hindered by high interface impedance due to rigid solid–solid contact with electrodes and instability when in contact with lithium metal. Here, a hybrid solid–liquid electrolyte is designed, consisting of a porous 3D LATP skeleton infiltrated with carbonate-based organic electrolyte, to ensure sufficient electrolyte wettability. Further, the thermodynamic instability between LATP and Li is solved by magnetron sputtering a layer of ferroelectric Ba<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> (BST) onto the LATP surface. This BST interlayer prevents direct contact between LATP and Li metal, enhancing performance by dynamically regulating Li<sup>+</sup> deposition, inhibiting dendrite growth, reducing overpotential and interface resistance, and improving Li<sup>+</sup> transport. Compared to the LATP-based electrolyte (LATP-LE), the BST-modified hybrid electrolyte (B@LATP-LE) demonstrates largely improved ionic conductivity (0.42 to 1.38 mS cm<sup>−1</sup>) and outstanding electrochemical performance, achieving stable cycling for over 7000 h in Li||Li cells and superior stability in LiFePO<sub>4</sub>||Li and LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub>||Li full cells. This approach offers a cost-effective solution to the interface issues of LATP and provides insights for high-performance lithium metal batteries.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 5","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70018","citationCount":"0","resultStr":"{\"title\":\"A Ba0.5Sr0.5TiO3 Interlayer Enabling Ultra-Stable Performance in Hybrid Solid–Liquid Lithium Metal Batteries\",\"authors\":\"Zhen Chen,&nbsp;Yang Wang,&nbsp;Kepin Zhu,&nbsp;Ziqi Zhao,&nbsp;Xian-Ao Li,&nbsp;Yixin Wu,&nbsp;Xinwei Dou,&nbsp;Minghua Chen,&nbsp;Chuying Ouyang\",\"doi\":\"10.1002/eem2.70018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub> (LATP) is a promising solid-state electrolyte for next-generation solid-state lithium metal batteries, offering high ionic conductivity, superior air stability, and low cost. However, its practical application is hindered by high interface impedance due to rigid solid–solid contact with electrodes and instability when in contact with lithium metal. Here, a hybrid solid–liquid electrolyte is designed, consisting of a porous 3D LATP skeleton infiltrated with carbonate-based organic electrolyte, to ensure sufficient electrolyte wettability. Further, the thermodynamic instability between LATP and Li is solved by magnetron sputtering a layer of ferroelectric Ba<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> (BST) onto the LATP surface. This BST interlayer prevents direct contact between LATP and Li metal, enhancing performance by dynamically regulating Li<sup>+</sup> deposition, inhibiting dendrite growth, reducing overpotential and interface resistance, and improving Li<sup>+</sup> transport. Compared to the LATP-based electrolyte (LATP-LE), the BST-modified hybrid electrolyte (B@LATP-LE) demonstrates largely improved ionic conductivity (0.42 to 1.38 mS cm<sup>−1</sup>) and outstanding electrochemical performance, achieving stable cycling for over 7000 h in Li||Li cells and superior stability in LiFePO<sub>4</sub>||Li and LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub>||Li full cells. This approach offers a cost-effective solution to the interface issues of LATP and provides insights for high-performance lithium metal batteries.</p>\",\"PeriodicalId\":11554,\"journal\":{\"name\":\"Energy & Environmental Materials\",\"volume\":\"8 5\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.70018\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eem2.70018\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.70018","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Li1.3Al0.3Ti1.7(PO4)3 (LATP)是一种很有前途的固态电解质,用于下一代固态锂金属电池,具有高离子电导率,优越的空气稳定性和低成本。然而,由于与电极的刚性固-固接触以及与锂金属接触时的不稳定性,其界面阻抗高,阻碍了其实际应用。本文设计了一种混合固液电解质,由多孔的3D LATP骨架渗透碳酸盐基有机电解质组成,以确保足够的电解质润湿性。此外,通过磁控溅射一层铁电Ba0.5Sr0.5TiO3 (BST)到LATP表面,解决了LATP与Li之间的热力学不稳定性。该BST中间层防止了LATP与Li金属的直接接触,通过动态调节Li+沉积、抑制枝晶生长、降低过电位和界面电阻以及改善Li+输运来提高性能。与基于latp的电解质(LATP-LE)相比,bst修饰的混合电解质(B@LATP-LE)的离子电导率大幅提高(0.42至1.38 mS cm−1),电化学性能优异,在Li||锂电池中可稳定循环超过7000 h,在LiFePO4||Li和LiNi0.8Co0.1Mn0.1O2||Li全电池中具有优异的稳定性。这种方法为LATP的接口问题提供了一种经济有效的解决方案,并为高性能锂金属电池提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Ba0.5Sr0.5TiO3 Interlayer Enabling Ultra-Stable Performance in Hybrid Solid–Liquid Lithium Metal Batteries

A Ba0.5Sr0.5TiO3 Interlayer Enabling Ultra-Stable Performance in Hybrid Solid–Liquid Lithium Metal Batteries

Li1.3Al0.3Ti1.7(PO4)3 (LATP) is a promising solid-state electrolyte for next-generation solid-state lithium metal batteries, offering high ionic conductivity, superior air stability, and low cost. However, its practical application is hindered by high interface impedance due to rigid solid–solid contact with electrodes and instability when in contact with lithium metal. Here, a hybrid solid–liquid electrolyte is designed, consisting of a porous 3D LATP skeleton infiltrated with carbonate-based organic electrolyte, to ensure sufficient electrolyte wettability. Further, the thermodynamic instability between LATP and Li is solved by magnetron sputtering a layer of ferroelectric Ba0.5Sr0.5TiO3 (BST) onto the LATP surface. This BST interlayer prevents direct contact between LATP and Li metal, enhancing performance by dynamically regulating Li+ deposition, inhibiting dendrite growth, reducing overpotential and interface resistance, and improving Li+ transport. Compared to the LATP-based electrolyte (LATP-LE), the BST-modified hybrid electrolyte (B@LATP-LE) demonstrates largely improved ionic conductivity (0.42 to 1.38 mS cm−1) and outstanding electrochemical performance, achieving stable cycling for over 7000 h in Li||Li cells and superior stability in LiFePO4||Li and LiNi0.8Co0.1Mn0.1O2||Li full cells. This approach offers a cost-effective solution to the interface issues of LATP and provides insights for high-performance lithium metal batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Materials
Energy & Environmental Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
17.60
自引率
6.00%
发文量
66
期刊介绍: Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信