弥合眼睛位置信号的冲突观点:一种神经计算方法来观察眼周知觉

IF 2.4 4区 医学 Q3 NEUROSCIENCES
Nikolai Stocks, Fred H. Hamker
{"title":"弥合眼睛位置信号的冲突观点:一种神经计算方法来观察眼周知觉","authors":"Nikolai Stocks,&nbsp;Fred H. Hamker","doi":"10.1111/ejn.70207","DOIUrl":null,"url":null,"abstract":"<p>Saccades are an integral component of visual perception, yet the accuracy and role of eye position signals in the brain remain unclear. The classical model of perisaccadic perception posits that the dorsal visual system combines an imperfect eye position signal with visual input, leading to systematic perisaccadic mislocalizations under specific experimental conditions. However, neurophysiological studies of eye position information have produced seemingly conflicting results. One team of researchers observed the eye position signal directly in gain-field neurons in the lateral intraparietal area (LIP) and found them incompatible with the classical model. In contrast, another team reported evidence for an eye position signal consistent with the classical model, even showing that accurate eye position can be decoded from neural activity. We modeled two subpopulations of neurons in LIP receiving input from two different sources, one representing the corollary discharge containing predictive presaccadic signals, the other representing a slowly updating proprioceptive eye position signal. By decoding eye position from the neural activity of these subpopulations, we observed the model containing sufficient information to allow the decoder to accurately predict and track the perisaccadic eye position. Our findings reconcile the apparent contradiction between the different neurophysiological studies by providing a unified framework for understanding eye position signals in perisaccadic perception. Our results suggest that a combination of a late-updating proprioceptive signal and a predictive corollary discharge is sufficient for accurately decoding eye position.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"62 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejn.70207","citationCount":"0","resultStr":"{\"title\":\"Bridging Conflicting Views on Eye Position Signals: A Neurocomputational Approach to Perisaccadic Perception\",\"authors\":\"Nikolai Stocks,&nbsp;Fred H. Hamker\",\"doi\":\"10.1111/ejn.70207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Saccades are an integral component of visual perception, yet the accuracy and role of eye position signals in the brain remain unclear. The classical model of perisaccadic perception posits that the dorsal visual system combines an imperfect eye position signal with visual input, leading to systematic perisaccadic mislocalizations under specific experimental conditions. However, neurophysiological studies of eye position information have produced seemingly conflicting results. One team of researchers observed the eye position signal directly in gain-field neurons in the lateral intraparietal area (LIP) and found them incompatible with the classical model. In contrast, another team reported evidence for an eye position signal consistent with the classical model, even showing that accurate eye position can be decoded from neural activity. We modeled two subpopulations of neurons in LIP receiving input from two different sources, one representing the corollary discharge containing predictive presaccadic signals, the other representing a slowly updating proprioceptive eye position signal. By decoding eye position from the neural activity of these subpopulations, we observed the model containing sufficient information to allow the decoder to accurately predict and track the perisaccadic eye position. Our findings reconcile the apparent contradiction between the different neurophysiological studies by providing a unified framework for understanding eye position signals in perisaccadic perception. Our results suggest that a combination of a late-updating proprioceptive signal and a predictive corollary discharge is sufficient for accurately decoding eye position.</p>\",\"PeriodicalId\":11993,\"journal\":{\"name\":\"European Journal of Neuroscience\",\"volume\":\"62 3\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejn.70207\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70207\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70207","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

扫视是视觉感知的一个组成部分,但眼睛位置信号在大脑中的准确性和作用尚不清楚。眼周知觉的经典模型认为,背侧视觉系统将不完美的眼位置信号与视觉输入相结合,在特定的实验条件下导致系统性的眼周定位错误。然而,眼位置信息的神经生理学研究产生了看似矛盾的结果。一组研究人员直接在外侧顶叶内区(LIP)的增益场神经元中观察到眼睛位置信号,发现它们与经典模型不相容。相比之下,另一个团队报告了与经典模型一致的眼睛位置信号的证据,甚至表明可以从神经活动中解码准确的眼睛位置。我们模拟了LIP中的两个神经元亚群,它们接受来自两个不同来源的输入,一个代表含有预测性前皮层信号的必然放电,另一个代表缓慢更新的本体感觉眼位置信号。通过从这些亚群的神经活动中解码眼睛位置,我们观察到该模型包含足够的信息,使解码器能够准确地预测和跟踪眼周位置。我们的研究结果调和了不同神经生理学研究之间的明显矛盾,为理解眼周知觉中的眼位置信号提供了一个统一的框架。我们的研究结果表明,延迟更新的本体感觉信号和预测的必然放电的结合足以准确解码眼睛的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bridging Conflicting Views on Eye Position Signals: A Neurocomputational Approach to Perisaccadic Perception

Bridging Conflicting Views on Eye Position Signals: A Neurocomputational Approach to Perisaccadic Perception

Saccades are an integral component of visual perception, yet the accuracy and role of eye position signals in the brain remain unclear. The classical model of perisaccadic perception posits that the dorsal visual system combines an imperfect eye position signal with visual input, leading to systematic perisaccadic mislocalizations under specific experimental conditions. However, neurophysiological studies of eye position information have produced seemingly conflicting results. One team of researchers observed the eye position signal directly in gain-field neurons in the lateral intraparietal area (LIP) and found them incompatible with the classical model. In contrast, another team reported evidence for an eye position signal consistent with the classical model, even showing that accurate eye position can be decoded from neural activity. We modeled two subpopulations of neurons in LIP receiving input from two different sources, one representing the corollary discharge containing predictive presaccadic signals, the other representing a slowly updating proprioceptive eye position signal. By decoding eye position from the neural activity of these subpopulations, we observed the model containing sufficient information to allow the decoder to accurately predict and track the perisaccadic eye position. Our findings reconcile the apparent contradiction between the different neurophysiological studies by providing a unified framework for understanding eye position signals in perisaccadic perception. Our results suggest that a combination of a late-updating proprioceptive signal and a predictive corollary discharge is sufficient for accurately decoding eye position.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Neuroscience
European Journal of Neuroscience 医学-神经科学
CiteScore
7.10
自引率
5.90%
发文量
305
审稿时长
3.5 months
期刊介绍: EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信