基于纳米封装相变材料和对流-辐射混合策略的电子器件动态散热

Hamza Elouizi, L. El Moutaouakil, M. Boukendil
{"title":"基于纳米封装相变材料和对流-辐射混合策略的电子器件动态散热","authors":"Hamza Elouizi,&nbsp;L. El Moutaouakil,&nbsp;M. Boukendil","doi":"10.1002/appl.70027","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Thermal regulation in miniaturized electronics with heterogeneous heat generation profiles has emerged as a pivotal challenge for sustaining performance and reliability in next-generation technologies. To address these thermal challenges, this study explores an electronic cooling system combining nano-encapsulated phase change material (NEPCM) with convection–radiation coupling. The system features a partitioned cavity with three different heat-generating blocks, divided by a conductive plate into an open section (cooled by natural convection and radiation) and a porous closed section saturated with NEPCM. Using the Galerkin finite element method, cooling efficiency is analyzed across critical parameters: PCM properties (melting temperature <i>T</i><sub><i>f</i></sub> = 300–315 K, Stefan number Ste = 0.4–1), plate geometry (thickness <i>e</i> = 0.04–0.24 cm, displacement <i>d</i> = 2.7–3.6 cm), radiative effects (emissivity <i>ε</i> = 0.1–0.9), nanoparticle concentration (%), porous media (<i>Da</i> = 10<sup>−5</sup>–10<sup>−2</sup>) and the cavity inclination angle (<span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n \n <mo>=</mo>\n \n <mo>−</mo>\n \n <mn>9</mn>\n \n <msup>\n <mn>0</mn>\n \n <mo>°</mo>\n </msup>\n </mrow>\n <annotation> $\\alpha =-9{0}^{^\\circ }$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <mn>9</mn>\n \n <msup>\n <mn>0</mn>\n \n <mo>°</mo>\n </msup>\n </mrow>\n <annotation> $9{0}^{^\\circ }$</annotation>\n </semantics></math>). The findings reveal that the maximum temperatures of the blocks can vary significantly, with reductions exceeding 7% when key parameters, such as Darcy number and cavity inclination angle, are optimized. In contrast, other parameters have a more limited influence, resulting in variations not exceeding 2%. These insights highlight the importance of selecting appropriate parameters for enhanced thermal management in electronic applications.</p></div>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.70027","citationCount":"0","resultStr":"{\"title\":\"Dynamic Heat Dissipation in Electronics Using Nano-Encapsulated Phase Change Material and Hybrid Convection–Radiation Strategies\",\"authors\":\"Hamza Elouizi,&nbsp;L. El Moutaouakil,&nbsp;M. Boukendil\",\"doi\":\"10.1002/appl.70027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Thermal regulation in miniaturized electronics with heterogeneous heat generation profiles has emerged as a pivotal challenge for sustaining performance and reliability in next-generation technologies. To address these thermal challenges, this study explores an electronic cooling system combining nano-encapsulated phase change material (NEPCM) with convection–radiation coupling. The system features a partitioned cavity with three different heat-generating blocks, divided by a conductive plate into an open section (cooled by natural convection and radiation) and a porous closed section saturated with NEPCM. Using the Galerkin finite element method, cooling efficiency is analyzed across critical parameters: PCM properties (melting temperature <i>T</i><sub><i>f</i></sub> = 300–315 K, Stefan number Ste = 0.4–1), plate geometry (thickness <i>e</i> = 0.04–0.24 cm, displacement <i>d</i> = 2.7–3.6 cm), radiative effects (emissivity <i>ε</i> = 0.1–0.9), nanoparticle concentration (%), porous media (<i>Da</i> = 10<sup>−5</sup>–10<sup>−2</sup>) and the cavity inclination angle (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n \\n <mo>=</mo>\\n \\n <mo>−</mo>\\n \\n <mn>9</mn>\\n \\n <msup>\\n <mn>0</mn>\\n \\n <mo>°</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\alpha =-9{0}^{^\\\\circ }$</annotation>\\n </semantics></math> to <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>9</mn>\\n \\n <msup>\\n <mn>0</mn>\\n \\n <mo>°</mo>\\n </msup>\\n </mrow>\\n <annotation> $9{0}^{^\\\\circ }$</annotation>\\n </semantics></math>). The findings reveal that the maximum temperatures of the blocks can vary significantly, with reductions exceeding 7% when key parameters, such as Darcy number and cavity inclination angle, are optimized. In contrast, other parameters have a more limited influence, resulting in variations not exceeding 2%. These insights highlight the importance of selecting appropriate parameters for enhanced thermal management in electronic applications.</p></div>\",\"PeriodicalId\":100109,\"journal\":{\"name\":\"Applied Research\",\"volume\":\"4 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.70027\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/appl.70027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/appl.70027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在具有异质产热剖面的小型化电子设备中,热调节已成为下一代技术保持性能和可靠性的关键挑战。为了解决这些热挑战,本研究探索了一种结合纳米封装相变材料(NEPCM)和对流辐射耦合的电子冷却系统。该系统的特点是具有三个不同的发热块的分区腔,由导电板分为开放部分(通过自然对流和辐射冷却)和饱和NEPCM的多孔封闭部分。采用Galerkin有限元法,分析了不同关键参数下的冷却效率:PCM性能(熔化温度Tf = 300-315 K,斯特凡数Ste = 0.4-1),板的几何形状(厚度e = 0.04-0.24 cm,位移d = 2.7-3.6 cm),辐射效应(发射率ε = 0.1-0.9),纳米颗粒浓度(%),多孔介质(Da = 10−5 ~ 10−2)和空腔倾角(α =−9 0°$\alpha =-9{0}^{^\circ}$ ~ 9)0°$9{0}^{^\circ}$)。研究结果表明,对达西数、空腔倾角等关键参数进行优化后,区块的最高温度变化幅度可达7%以上。相比之下,其他参数的影响较为有限,导致的变化不超过2%。这些见解强调了在电子应用中选择适当参数以增强热管理的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamic Heat Dissipation in Electronics Using Nano-Encapsulated Phase Change Material and Hybrid Convection–Radiation Strategies

Dynamic Heat Dissipation in Electronics Using Nano-Encapsulated Phase Change Material and Hybrid Convection–Radiation Strategies

Thermal regulation in miniaturized electronics with heterogeneous heat generation profiles has emerged as a pivotal challenge for sustaining performance and reliability in next-generation technologies. To address these thermal challenges, this study explores an electronic cooling system combining nano-encapsulated phase change material (NEPCM) with convection–radiation coupling. The system features a partitioned cavity with three different heat-generating blocks, divided by a conductive plate into an open section (cooled by natural convection and radiation) and a porous closed section saturated with NEPCM. Using the Galerkin finite element method, cooling efficiency is analyzed across critical parameters: PCM properties (melting temperature Tf = 300–315 K, Stefan number Ste = 0.4–1), plate geometry (thickness e = 0.04–0.24 cm, displacement d = 2.7–3.6 cm), radiative effects (emissivity ε = 0.1–0.9), nanoparticle concentration (%), porous media (Da = 10−5–10−2) and the cavity inclination angle ( α = 9 0 ° $\alpha =-9{0}^{^\circ }$ to 9 0 ° $9{0}^{^\circ }$ ). The findings reveal that the maximum temperatures of the blocks can vary significantly, with reductions exceeding 7% when key parameters, such as Darcy number and cavity inclination angle, are optimized. In contrast, other parameters have a more limited influence, resulting in variations not exceeding 2%. These insights highlight the importance of selecting appropriate parameters for enhanced thermal management in electronic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信