一种POM@CNT混合纳米结构,可实现锂离子电池的快速动力学和高容量†

IF 6.4 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Eman Gul, Zeeshan Haider, Tanveer Hussain Bokhari, Mashkoor Ahmad, Gul Rahman and Amjad Nisar
{"title":"一种POM@CNT混合纳米结构,可实现锂离子电池的快速动力学和高容量†","authors":"Eman Gul, Zeeshan Haider, Tanveer Hussain Bokhari, Mashkoor Ahmad, Gul Rahman and Amjad Nisar","doi":"10.1039/D5QM00376H","DOIUrl":null,"url":null,"abstract":"<p >Polyoxometalates (POMs) are promising alternative electrode materials for lithium-ion batteries (LIBs) owing to their redox chemistry and high energy storage potential. However, their practical application is limited by inherent drawbacks such as low electrical conductivity and high solubility in electrolytes. To overcome these challenges, we synthesized a polyoxometalate–carbon nanotube hybrid nanostructure (POM@CNT) by wiring phosphomolybdic acid (PMo) with functionalized carbon nanotubes (CNTs) <em>via</em> electrostatic interactions. Comprehensive structural and electrochemical characterizations confirmed the formation of a stable, conductive hybrid network. The POM@CNT electrode delivers a remarkable initial discharge capacity of 2100 mAh g<small><sup>−1</sup></small>, excellent rate capability and long-term cycling stability over 500 cycles, significantly outperforming electrodes based on PMo or CNTs alone. Electrochemical impedance spectroscopy (EIS) and density functional theory (DFT) analyses revealed that the hybrid structure enables faster charge transfer and enhanced Li<small><sup>+</sup></small> ion diffusion. The superior performance is attributed to the synergistic integration of PMo and CNTs, which promotes rapid electrochemical kinetics. This work highlights the potential of the POMs@CNT hybrid nanostructure as a high-performance and durable electrode material for lithium-ion storage, paving the way for further exploration of electroactive POM clusters in advanced energy storage systems.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 16","pages":" 2571-2580"},"PeriodicalIF":6.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A POM@CNT hybrid nanostructure enabling fast kinetics and high capacity in lithium-ion batteries†\",\"authors\":\"Eman Gul, Zeeshan Haider, Tanveer Hussain Bokhari, Mashkoor Ahmad, Gul Rahman and Amjad Nisar\",\"doi\":\"10.1039/D5QM00376H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Polyoxometalates (POMs) are promising alternative electrode materials for lithium-ion batteries (LIBs) owing to their redox chemistry and high energy storage potential. However, their practical application is limited by inherent drawbacks such as low electrical conductivity and high solubility in electrolytes. To overcome these challenges, we synthesized a polyoxometalate–carbon nanotube hybrid nanostructure (POM@CNT) by wiring phosphomolybdic acid (PMo) with functionalized carbon nanotubes (CNTs) <em>via</em> electrostatic interactions. Comprehensive structural and electrochemical characterizations confirmed the formation of a stable, conductive hybrid network. The POM@CNT electrode delivers a remarkable initial discharge capacity of 2100 mAh g<small><sup>−1</sup></small>, excellent rate capability and long-term cycling stability over 500 cycles, significantly outperforming electrodes based on PMo or CNTs alone. Electrochemical impedance spectroscopy (EIS) and density functional theory (DFT) analyses revealed that the hybrid structure enables faster charge transfer and enhanced Li<small><sup>+</sup></small> ion diffusion. The superior performance is attributed to the synergistic integration of PMo and CNTs, which promotes rapid electrochemical kinetics. This work highlights the potential of the POMs@CNT hybrid nanostructure as a high-performance and durable electrode material for lithium-ion storage, paving the way for further exploration of electroactive POM clusters in advanced energy storage systems.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 16\",\"pages\":\" 2571-2580\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00376h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00376h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多金属氧酸盐(pom)由于其氧化还原化学性质和高能量存储潜力,是锂离子电池(LIBs)极具潜力的替代电极材料。然而,它们的实际应用受到固有缺陷的限制,如低导电性和在电解质中的高溶解度。为了克服这些挑战,我们通过静电相互作用将磷钼酸(PMo)与功能化碳纳米管(CNTs)连接,合成了多金属氧酸-碳纳米管杂化纳米结构(POM@CNT)。全面的结构和电化学表征证实了形成稳定的导电混合网络。POM@CNT电极的初始放电容量为2100 mAh g−1,具有优异的倍率能力和超过500次循环的长期循环稳定性,明显优于单独基于PMo或CNTs的电极。电化学阻抗谱(EIS)和密度泛函理论(DFT)分析表明,混合结构可以加快电荷转移和增强Li+离子的扩散。优异的性能归功于PMo和CNTs的协同整合,促进了快速的电化学动力学。这项工作突出了POMs@CNT混合纳米结构作为高性能和耐用锂离子存储电极材料的潜力,为进一步探索电活性POM簇在先进储能系统中的应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A POM@CNT hybrid nanostructure enabling fast kinetics and high capacity in lithium-ion batteries†

A POM@CNT hybrid nanostructure enabling fast kinetics and high capacity in lithium-ion batteries†

Polyoxometalates (POMs) are promising alternative electrode materials for lithium-ion batteries (LIBs) owing to their redox chemistry and high energy storage potential. However, their practical application is limited by inherent drawbacks such as low electrical conductivity and high solubility in electrolytes. To overcome these challenges, we synthesized a polyoxometalate–carbon nanotube hybrid nanostructure (POM@CNT) by wiring phosphomolybdic acid (PMo) with functionalized carbon nanotubes (CNTs) via electrostatic interactions. Comprehensive structural and electrochemical characterizations confirmed the formation of a stable, conductive hybrid network. The POM@CNT electrode delivers a remarkable initial discharge capacity of 2100 mAh g−1, excellent rate capability and long-term cycling stability over 500 cycles, significantly outperforming electrodes based on PMo or CNTs alone. Electrochemical impedance spectroscopy (EIS) and density functional theory (DFT) analyses revealed that the hybrid structure enables faster charge transfer and enhanced Li+ ion diffusion. The superior performance is attributed to the synergistic integration of PMo and CNTs, which promotes rapid electrochemical kinetics. This work highlights the potential of the POMs@CNT hybrid nanostructure as a high-performance and durable electrode material for lithium-ion storage, paving the way for further exploration of electroactive POM clusters in advanced energy storage systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信