氢同位素分离的微孔cu基有机框架

IF 6.4 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiufang Li, Zhanfeng Ju, Kongzhao Su, Wenjing Wang and Daqiang Yuan
{"title":"氢同位素分离的微孔cu基有机框架","authors":"Xiufang Li, Zhanfeng Ju, Kongzhao Su, Wenjing Wang and Daqiang Yuan","doi":"10.1039/D5QM00312A","DOIUrl":null,"url":null,"abstract":"<p >Deuterium gas is indispensable for various applications, yet the efficient separation of hydrogen isotopes remains a significant challenge. Separation at elevated temperatures using the chemical affinity quantum sieving (CAQS) effect has emerged as a promising strategy. Herein, we systematically investigate the hydrogen isotope gas adsorption and separation properties of two microporous copper-based MOFs, <strong>Cu-BTB</strong> and <strong>Cu-BDC</strong>. Comparative analysis reveals that the distinct channel architecture in <strong>Cu-BTB</strong> substantially governs its hydrogen isotope separation efficiency, suggesting a structure–property correlation in these porous crystalline materials. Theoretical calculations attribute the high adsorption enthalpy of <strong>Cu-BTB</strong> to the synergistic interplay between its open metal sites and well-defined pore structure. Dynamic gas breakthrough experiments further demonstrate a separation factor of 1.3 at 77 K and 1 bar.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 16","pages":" 2508-2513"},"PeriodicalIF":6.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microporous Cu-based organic frameworks for hydrogen isotope separation†\",\"authors\":\"Xiufang Li, Zhanfeng Ju, Kongzhao Su, Wenjing Wang and Daqiang Yuan\",\"doi\":\"10.1039/D5QM00312A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Deuterium gas is indispensable for various applications, yet the efficient separation of hydrogen isotopes remains a significant challenge. Separation at elevated temperatures using the chemical affinity quantum sieving (CAQS) effect has emerged as a promising strategy. Herein, we systematically investigate the hydrogen isotope gas adsorption and separation properties of two microporous copper-based MOFs, <strong>Cu-BTB</strong> and <strong>Cu-BDC</strong>. Comparative analysis reveals that the distinct channel architecture in <strong>Cu-BTB</strong> substantially governs its hydrogen isotope separation efficiency, suggesting a structure–property correlation in these porous crystalline materials. Theoretical calculations attribute the high adsorption enthalpy of <strong>Cu-BTB</strong> to the synergistic interplay between its open metal sites and well-defined pore structure. Dynamic gas breakthrough experiments further demonstrate a separation factor of 1.3 at 77 K and 1 bar.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 16\",\"pages\":\" 2508-2513\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00312a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00312a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氘气在各种应用中是必不可少的,但氢同位素的有效分离仍然是一个重大挑战。利用化学亲和量子筛分(CAQS)效应在高温下分离已成为一种很有前途的策略。本文系统地研究了Cu-BTB和Cu-BDC两种微孔铜基mof对氢同位素气体的吸附和分离性能。对比分析表明,Cu-BTB中独特的通道结构在很大程度上决定了其氢同位素分离效率,表明这些多孔晶体材料的结构-性能相关。理论计算将Cu-BTB的高吸附焓归因于其开放的金属位点和明确的孔隙结构之间的协同相互作用。动态气体突破实验进一步证明,在77 K和1 bar条件下,分离系数为1.3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microporous Cu-based organic frameworks for hydrogen isotope separation†

Microporous Cu-based organic frameworks for hydrogen isotope separation†

Deuterium gas is indispensable for various applications, yet the efficient separation of hydrogen isotopes remains a significant challenge. Separation at elevated temperatures using the chemical affinity quantum sieving (CAQS) effect has emerged as a promising strategy. Herein, we systematically investigate the hydrogen isotope gas adsorption and separation properties of two microporous copper-based MOFs, Cu-BTB and Cu-BDC. Comparative analysis reveals that the distinct channel architecture in Cu-BTB substantially governs its hydrogen isotope separation efficiency, suggesting a structure–property correlation in these porous crystalline materials. Theoretical calculations attribute the high adsorption enthalpy of Cu-BTB to the synergistic interplay between its open metal sites and well-defined pore structure. Dynamic gas breakthrough experiments further demonstrate a separation factor of 1.3 at 77 K and 1 bar.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信