多约束多任务环境下非完整农业机器人最优运动规划与导航

IF 8.9 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Wei Zhang , Teng Sun , Yunhui Li , Chuangxin He , Xianchao Xiu , Zhonghua Miao
{"title":"多约束多任务环境下非完整农业机器人最优运动规划与导航","authors":"Wei Zhang ,&nbsp;Teng Sun ,&nbsp;Yunhui Li ,&nbsp;Chuangxin He ,&nbsp;Xianchao Xiu ,&nbsp;Zhonghua Miao","doi":"10.1016/j.compag.2025.110822","DOIUrl":null,"url":null,"abstract":"<div><div>Agricultural robot navigation requires not only point-to-point movement but also seamless multi-task switching and high-precision operations. The varying constraints at different stages and complex agricultural environment pose challenges for continuous motion planning and precise tracking control. To address these, we propose a comprehensive autonomous navigation framework that enables efficient multi-task transitions and ensures high-precision execution in agricultural operations. The proposed framework consists of optimal continuous motion planning and lateral-longitudinal combined control. For motion planning, a trajectory optimization problem is formulated as a convex QP using segmented Bézier curves. Considering multi-task, safety, dynamic, and waypoint constraints, the objective function is optimized to generate a safe, dynamically feasible, and energy-efficient trajectory. For tracking control, based on the error-based dynamic model of a nonholonomic agricultural robot, a decoupled analysis of lateral and longitudinal tracking error types is conducted, and a combined lateral-longitudinal controller is designed to ensure continuous tracking of position, velocity, and heading angle. We evaluated the proposed method through motion trajectory generation and tracking control experiments. Results show maximum navigation errors of 0.0400 m (lateral), 0.0596 m (longitudinal), 0.0760 m/s (velocity), and 0.0867 rad (heading angle), with RMSEs of 0.0111 m, 0.0213 m, 0.0245 m/s, and 0.0010 rad, respectively. The method ensures seamless multi-task transitions without stopping for adjustments, achieving precise control across all operational phases.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"238 ","pages":"Article 110822"},"PeriodicalIF":8.9000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal motion planning and navigation for nonholonomic agricultural robots in multi-constraint and multi-task environments\",\"authors\":\"Wei Zhang ,&nbsp;Teng Sun ,&nbsp;Yunhui Li ,&nbsp;Chuangxin He ,&nbsp;Xianchao Xiu ,&nbsp;Zhonghua Miao\",\"doi\":\"10.1016/j.compag.2025.110822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Agricultural robot navigation requires not only point-to-point movement but also seamless multi-task switching and high-precision operations. The varying constraints at different stages and complex agricultural environment pose challenges for continuous motion planning and precise tracking control. To address these, we propose a comprehensive autonomous navigation framework that enables efficient multi-task transitions and ensures high-precision execution in agricultural operations. The proposed framework consists of optimal continuous motion planning and lateral-longitudinal combined control. For motion planning, a trajectory optimization problem is formulated as a convex QP using segmented Bézier curves. Considering multi-task, safety, dynamic, and waypoint constraints, the objective function is optimized to generate a safe, dynamically feasible, and energy-efficient trajectory. For tracking control, based on the error-based dynamic model of a nonholonomic agricultural robot, a decoupled analysis of lateral and longitudinal tracking error types is conducted, and a combined lateral-longitudinal controller is designed to ensure continuous tracking of position, velocity, and heading angle. We evaluated the proposed method through motion trajectory generation and tracking control experiments. Results show maximum navigation errors of 0.0400 m (lateral), 0.0596 m (longitudinal), 0.0760 m/s (velocity), and 0.0867 rad (heading angle), with RMSEs of 0.0111 m, 0.0213 m, 0.0245 m/s, and 0.0010 rad, respectively. The method ensures seamless multi-task transitions without stopping for adjustments, achieving precise control across all operational phases.</div></div>\",\"PeriodicalId\":50627,\"journal\":{\"name\":\"Computers and Electronics in Agriculture\",\"volume\":\"238 \",\"pages\":\"Article 110822\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Electronics in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168169925009287\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169925009287","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

农业机器人导航不仅需要点对点运动,还需要多任务无缝切换和高精度操作。不同阶段的约束条件和复杂的农业环境对连续运动规划和精确跟踪控制提出了挑战。为了解决这些问题,我们提出了一个全面的自主导航框架,可以实现高效的多任务转换,并确保农业作业中的高精度执行。该框架由最优连续运动规划和横向-纵向联合控制组成。对于运动规划,将轨迹优化问题表述为使用分段bsamzier曲线的凸QP。考虑多任务、安全、动态和航路点约束,优化目标函数,生成安全、动态可行和节能的轨迹。在跟踪控制方面,基于基于误差的非完整农业机器人动力学模型,对横向和纵向跟踪误差类型进行解耦分析,设计了横向和纵向组合控制器,保证了位置、速度和航向角的连续跟踪。通过运动轨迹生成和跟踪控制实验对该方法进行了验证。结果表明,该系统最大导航误差分别为0.0400 m(横向)、0.0596 m(纵向)、0.0760 m/s(速度)和0.0867 rad(航向角),均方根误差分别为0.0111 m、0.0213 m、0.0245 m/s和0.0010 rad。该方法确保了多任务无缝过渡,无需停止调整,实现了对所有操作阶段的精确控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal motion planning and navigation for nonholonomic agricultural robots in multi-constraint and multi-task environments
Agricultural robot navigation requires not only point-to-point movement but also seamless multi-task switching and high-precision operations. The varying constraints at different stages and complex agricultural environment pose challenges for continuous motion planning and precise tracking control. To address these, we propose a comprehensive autonomous navigation framework that enables efficient multi-task transitions and ensures high-precision execution in agricultural operations. The proposed framework consists of optimal continuous motion planning and lateral-longitudinal combined control. For motion planning, a trajectory optimization problem is formulated as a convex QP using segmented Bézier curves. Considering multi-task, safety, dynamic, and waypoint constraints, the objective function is optimized to generate a safe, dynamically feasible, and energy-efficient trajectory. For tracking control, based on the error-based dynamic model of a nonholonomic agricultural robot, a decoupled analysis of lateral and longitudinal tracking error types is conducted, and a combined lateral-longitudinal controller is designed to ensure continuous tracking of position, velocity, and heading angle. We evaluated the proposed method through motion trajectory generation and tracking control experiments. Results show maximum navigation errors of 0.0400 m (lateral), 0.0596 m (longitudinal), 0.0760 m/s (velocity), and 0.0867 rad (heading angle), with RMSEs of 0.0111 m, 0.0213 m, 0.0245 m/s, and 0.0010 rad, respectively. The method ensures seamless multi-task transitions without stopping for adjustments, achieving precise control across all operational phases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信