用于大型奶牛群泌乳性能精确预测的机器学习框架:整合饮食、环境和健康风险因素

IF 8.9 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Evan Y. Liu , Shuiping Wang , Bihong Zhang , Nazir Ahmad Khan , Shaoxun Tang , Chuanshe Zhou , Zhixiong He , Zhiliang Tan , Yong Liu
{"title":"用于大型奶牛群泌乳性能精确预测的机器学习框架:整合饮食、环境和健康风险因素","authors":"Evan Y. Liu ,&nbsp;Shuiping Wang ,&nbsp;Bihong Zhang ,&nbsp;Nazir Ahmad Khan ,&nbsp;Shaoxun Tang ,&nbsp;Chuanshe Zhou ,&nbsp;Zhixiong He ,&nbsp;Zhiliang Tan ,&nbsp;Yong Liu","doi":"10.1016/j.compag.2025.110832","DOIUrl":null,"url":null,"abstract":"<div><div>Precision management of large dairy herds requires accurate prediction of daily milk yield (DMY) and early identification of health risks. This study presents a machine learning framework addressing two interlinked objectives: (1) high-accuracy DMY prediction, and (2) early disease detection, using a 5-year dataset from 19,798 Hostein cows. Our novel dual modeling pipeline integrates advanced ML models, including Random Forest (RF), Gradient Boosting Regression (GBR), and Extreme Gradient Boosting (XGB), to predict DMY using dynamic environmental, dietary, and physiological inputs. RF emerged as the top model for DMY prediction (R<sup>2</sup> = 0.77, RMSE = 5.72 kg/d), capturing nonlinear interactions among lactation stage, parity, and nutrient intake. Shapley Additive exPlanations (SHAP) analysis identified lactation days, parity, and dietary ether extract (EE) as key drivers; a 1 % EE increase boosted DMY by 2.1 kg/d in multiparous cows, and neutral detergent fiber (NDF) &gt; 35 % reduced DMY by 4.2 kg/d due to rumen fill limitations. For disease detection, an RF classifier integrated SMOTE (synthetic minority over-sampling technique) achieved robust performance (AUC = 0.93, sensitivity = 0.80), enabling early identification of mastitis and ketosis <em>via</em> yield deviations. Real-time temperature-humidity index (THI) alerts (&gt;72) reduced yield losses by 4.8 kg/d. Practical applications include dietary optimization (16.8 % crude protein, 5.8 % EE during peak lactation) and automated health alerts. This study advances precision dairy farming by providing a scalable, interpretable framework that bridges ML innovation with actionable herd management strategies, validated across diverse lactation stages and environmental conditions. Future work will integrate genomic and IoT-enabled sensor data to enhance predictive accuracy and adaptability.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"238 ","pages":"Article 110832"},"PeriodicalIF":8.9000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A machine learning framework for precision prediction of lactation performance in large dairy herds: Integrating dietary, environmental, and health risk factors\",\"authors\":\"Evan Y. Liu ,&nbsp;Shuiping Wang ,&nbsp;Bihong Zhang ,&nbsp;Nazir Ahmad Khan ,&nbsp;Shaoxun Tang ,&nbsp;Chuanshe Zhou ,&nbsp;Zhixiong He ,&nbsp;Zhiliang Tan ,&nbsp;Yong Liu\",\"doi\":\"10.1016/j.compag.2025.110832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Precision management of large dairy herds requires accurate prediction of daily milk yield (DMY) and early identification of health risks. This study presents a machine learning framework addressing two interlinked objectives: (1) high-accuracy DMY prediction, and (2) early disease detection, using a 5-year dataset from 19,798 Hostein cows. Our novel dual modeling pipeline integrates advanced ML models, including Random Forest (RF), Gradient Boosting Regression (GBR), and Extreme Gradient Boosting (XGB), to predict DMY using dynamic environmental, dietary, and physiological inputs. RF emerged as the top model for DMY prediction (R<sup>2</sup> = 0.77, RMSE = 5.72 kg/d), capturing nonlinear interactions among lactation stage, parity, and nutrient intake. Shapley Additive exPlanations (SHAP) analysis identified lactation days, parity, and dietary ether extract (EE) as key drivers; a 1 % EE increase boosted DMY by 2.1 kg/d in multiparous cows, and neutral detergent fiber (NDF) &gt; 35 % reduced DMY by 4.2 kg/d due to rumen fill limitations. For disease detection, an RF classifier integrated SMOTE (synthetic minority over-sampling technique) achieved robust performance (AUC = 0.93, sensitivity = 0.80), enabling early identification of mastitis and ketosis <em>via</em> yield deviations. Real-time temperature-humidity index (THI) alerts (&gt;72) reduced yield losses by 4.8 kg/d. Practical applications include dietary optimization (16.8 % crude protein, 5.8 % EE during peak lactation) and automated health alerts. This study advances precision dairy farming by providing a scalable, interpretable framework that bridges ML innovation with actionable herd management strategies, validated across diverse lactation stages and environmental conditions. Future work will integrate genomic and IoT-enabled sensor data to enhance predictive accuracy and adaptability.</div></div>\",\"PeriodicalId\":50627,\"journal\":{\"name\":\"Computers and Electronics in Agriculture\",\"volume\":\"238 \",\"pages\":\"Article 110832\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Electronics in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016816992500938X\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016816992500938X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

大型奶牛群的精准管理需要对日产奶量(DMY)进行准确预测,并及早发现健康风险。本研究提出了一个机器学习框架,解决两个相互关联的目标:(1)高精度DMY预测,(2)早期疾病检测,使用来自19,798头荷斯坦奶牛的5年数据集。我们新颖的双建模管道集成了先进的ML模型,包括随机森林(RF),梯度增强回归(GBR)和极端梯度增强(XGB),使用动态环境,饮食和生理输入来预测DMY。RF是预测DMY的最佳模型(R2 = 0.77, RMSE = 5.72 kg/d),反映了泌乳期、胎次和营养摄入量之间的非线性相互作用。Shapley添加剂解释(SHAP)分析确定了哺乳天数、胎次和饲粮粗脂肪(EE)是关键驱动因素;饲粮中添加1%粗脂肪可使多产奶牛的DMY提高2.1 kg/d,中性洗涤纤维(NDF)提高2.1 kg/d;35%由于瘤胃填充限制,DMY降低4.2 kg/d。对于疾病检测,集成了SMOTE(合成少数过采样技术)的射频分类器实现了稳健的性能(AUC = 0.93,灵敏度= 0.80),能够通过产率偏差早期识别乳腺炎和酮症。实时温湿度指数(THI)警报(>72)可减少产量损失4.8 kg/d。实际应用包括膳食优化(哺乳高峰期间粗蛋白质含量为16.8%,粗脂肪含量为5.8%)和自动健康警报。本研究通过提供一个可扩展的、可解释的框架,将ML创新与可操作的牛群管理策略联系起来,并在不同的哺乳阶段和环境条件下得到验证,从而推进了精准奶牛养殖。未来的工作将整合基因组和物联网传感器数据,以提高预测的准确性和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A machine learning framework for precision prediction of lactation performance in large dairy herds: Integrating dietary, environmental, and health risk factors
Precision management of large dairy herds requires accurate prediction of daily milk yield (DMY) and early identification of health risks. This study presents a machine learning framework addressing two interlinked objectives: (1) high-accuracy DMY prediction, and (2) early disease detection, using a 5-year dataset from 19,798 Hostein cows. Our novel dual modeling pipeline integrates advanced ML models, including Random Forest (RF), Gradient Boosting Regression (GBR), and Extreme Gradient Boosting (XGB), to predict DMY using dynamic environmental, dietary, and physiological inputs. RF emerged as the top model for DMY prediction (R2 = 0.77, RMSE = 5.72 kg/d), capturing nonlinear interactions among lactation stage, parity, and nutrient intake. Shapley Additive exPlanations (SHAP) analysis identified lactation days, parity, and dietary ether extract (EE) as key drivers; a 1 % EE increase boosted DMY by 2.1 kg/d in multiparous cows, and neutral detergent fiber (NDF) > 35 % reduced DMY by 4.2 kg/d due to rumen fill limitations. For disease detection, an RF classifier integrated SMOTE (synthetic minority over-sampling technique) achieved robust performance (AUC = 0.93, sensitivity = 0.80), enabling early identification of mastitis and ketosis via yield deviations. Real-time temperature-humidity index (THI) alerts (>72) reduced yield losses by 4.8 kg/d. Practical applications include dietary optimization (16.8 % crude protein, 5.8 % EE during peak lactation) and automated health alerts. This study advances precision dairy farming by providing a scalable, interpretable framework that bridges ML innovation with actionable herd management strategies, validated across diverse lactation stages and environmental conditions. Future work will integrate genomic and IoT-enabled sensor data to enhance predictive accuracy and adaptability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信