{"title":"具有慢、快时变和切换的线性系统的稳定性:一般情况","authors":"Hyungbo Shim , Daniel Liberzon","doi":"10.1016/j.nahs.2025.101626","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies exponential stability of linear systems with slow and fast time variation and switching. We use averaging to eliminate the fast dynamics and only retain the slow dynamics. We then use a recent stability criterion for slowly time-varying and switched systems, combined with perturbation analysis, to prove stability of the original system. The analysis involves working with an impulsive system in new coordinates, which enables us to treat a more general class of systems compared to previous work.</div></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"58 ","pages":"Article 101626"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of linear systems with slow and fast time variation and switching: General case\",\"authors\":\"Hyungbo Shim , Daniel Liberzon\",\"doi\":\"10.1016/j.nahs.2025.101626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies exponential stability of linear systems with slow and fast time variation and switching. We use averaging to eliminate the fast dynamics and only retain the slow dynamics. We then use a recent stability criterion for slowly time-varying and switched systems, combined with perturbation analysis, to prove stability of the original system. The analysis involves working with an impulsive system in new coordinates, which enables us to treat a more general class of systems compared to previous work.</div></div>\",\"PeriodicalId\":49011,\"journal\":{\"name\":\"Nonlinear Analysis-Hybrid Systems\",\"volume\":\"58 \",\"pages\":\"Article 101626\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Hybrid Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751570X25000524\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X25000524","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Stability of linear systems with slow and fast time variation and switching: General case
This paper studies exponential stability of linear systems with slow and fast time variation and switching. We use averaging to eliminate the fast dynamics and only retain the slow dynamics. We then use a recent stability criterion for slowly time-varying and switched systems, combined with perturbation analysis, to prove stability of the original system. The analysis involves working with an impulsive system in new coordinates, which enables us to treat a more general class of systems compared to previous work.
期刊介绍:
Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.