不相交图的确切Turán数目——Simonovits定理的推广及以后

IF 0.9 3区 数学 Q1 MATHEMATICS
Guantao Chen , Xingyu Lei , Shuchao Li
{"title":"不相交图的确切Turán数目——Simonovits定理的推广及以后","authors":"Guantao Chen ,&nbsp;Xingyu Lei ,&nbsp;Shuchao Li","doi":"10.1016/j.ejc.2025.104226","DOIUrl":null,"url":null,"abstract":"<div><div>For a given graph <span><math><mi>H</mi></math></span>, we say that a graph <span><math><mi>G</mi></math></span> is <span><math><mi>H</mi></math></span><em>-free</em> if it does not contain <span><math><mi>H</mi></math></span> as a subgraph. Let <span><math><mrow><mtext>ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> (resp. <span><math><mrow><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>) denote the maximum size (resp. spectral radius) of an <span><math><mi>n</mi></math></span>-vertex <span><math><mi>H</mi></math></span>-free graph, and <span><math><mrow><mtext>Ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> (resp. <span><math><mrow><msub><mrow><mtext>Ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>) denote the set of all <span><math><mi>n</mi></math></span>-vertex <span><math><mi>H</mi></math></span>-free graphs with <span><math><mrow><mtext>ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> edges (resp. spectral radius <span><math><mrow><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>). We call <span><math><mrow><mtext>ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> (resp. <span><math><mrow><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>) the <em>Turán number</em> (resp. <em>spectral Turán number</em>) of <span><math><mi>H</mi></math></span>. Suppose that we know the exact values of Turán numbers of <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span>, respectively. Can we get the exact value of the Turán number of the disjoint union of <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><mo>⋯</mo><mo>∪</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span>? Moon considered the disjoint union of complete graphs. A graph <span><math><mi>G</mi></math></span> is <em>color-critical</em> if there exists an edge <span><math><mi>e</mi></math></span> such that <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>−</mo><mi>e</mi><mo>)</mo></mrow><mo>&lt;</mo><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Simonovits extended Moon’s result to the disjoint union of <em>color-critical graphs</em> for sufficiently large <span><math><mi>n</mi></math></span>. Erdős et al. determined the Turán number of triangles sharing exactly one vertex. Chen et al. extended the result to complete graphs sharing exactly one vertex. Let <span><math><mi>F</mi></math></span> be a disjoint union of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, where <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a graph obtained by joining a vertex to all vertices of <span><math><mrow><msub><mrow><mo>⋃</mo></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub></mrow></math></span> and each <span><math><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub></math></span> is a color-critical graph. For a large <span><math><mi>n</mi></math></span>, we determined <span><math><mrow><mtext>ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>. Moreover, we show that for each <span><math><mi>F</mi></math></span> of these graphs, <span><math><mrow><msub><mrow><mtext>Ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow><mo>⊆</mo><mtext>Ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> provided <span><math><mi>n</mi></math></span> is sufficiently large, which provides a large class of graphs that gives a positive answer to an open problem proposed recently by Liu and Ning: Characterize graphs <span><math><mi>F</mi></math></span> satisfying <span><math><mrow><msub><mrow><mi>Ex</mi></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow><mo>⊆</mo><mi>Ex</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104226"},"PeriodicalIF":0.9000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The exact Turán number of disjoint graphs– A generalization of Simonovits’ theorem, and beyond\",\"authors\":\"Guantao Chen ,&nbsp;Xingyu Lei ,&nbsp;Shuchao Li\",\"doi\":\"10.1016/j.ejc.2025.104226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a given graph <span><math><mi>H</mi></math></span>, we say that a graph <span><math><mi>G</mi></math></span> is <span><math><mi>H</mi></math></span><em>-free</em> if it does not contain <span><math><mi>H</mi></math></span> as a subgraph. Let <span><math><mrow><mtext>ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> (resp. <span><math><mrow><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>) denote the maximum size (resp. spectral radius) of an <span><math><mi>n</mi></math></span>-vertex <span><math><mi>H</mi></math></span>-free graph, and <span><math><mrow><mtext>Ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> (resp. <span><math><mrow><msub><mrow><mtext>Ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>) denote the set of all <span><math><mi>n</mi></math></span>-vertex <span><math><mi>H</mi></math></span>-free graphs with <span><math><mrow><mtext>ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> edges (resp. spectral radius <span><math><mrow><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>). We call <span><math><mrow><mtext>ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> (resp. <span><math><mrow><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>) the <em>Turán number</em> (resp. <em>spectral Turán number</em>) of <span><math><mi>H</mi></math></span>. Suppose that we know the exact values of Turán numbers of <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span>, respectively. Can we get the exact value of the Turán number of the disjoint union of <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><mo>⋯</mo><mo>∪</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span>? Moon considered the disjoint union of complete graphs. A graph <span><math><mi>G</mi></math></span> is <em>color-critical</em> if there exists an edge <span><math><mi>e</mi></math></span> such that <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>−</mo><mi>e</mi><mo>)</mo></mrow><mo>&lt;</mo><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Simonovits extended Moon’s result to the disjoint union of <em>color-critical graphs</em> for sufficiently large <span><math><mi>n</mi></math></span>. Erdős et al. determined the Turán number of triangles sharing exactly one vertex. Chen et al. extended the result to complete graphs sharing exactly one vertex. Let <span><math><mi>F</mi></math></span> be a disjoint union of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, where <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a graph obtained by joining a vertex to all vertices of <span><math><mrow><msub><mrow><mo>⋃</mo></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub></mrow></math></span> and each <span><math><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msub></math></span> is a color-critical graph. For a large <span><math><mi>n</mi></math></span>, we determined <span><math><mrow><mtext>ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>. Moreover, we show that for each <span><math><mi>F</mi></math></span> of these graphs, <span><math><mrow><msub><mrow><mtext>Ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow><mo>⊆</mo><mtext>Ex</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> provided <span><math><mi>n</mi></math></span> is sufficiently large, which provides a large class of graphs that gives a positive answer to an open problem proposed recently by Liu and Ning: Characterize graphs <span><math><mi>F</mi></math></span> satisfying <span><math><mrow><msub><mrow><mi>Ex</mi></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow><mo>⊆</mo><mi>Ex</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"130 \",\"pages\":\"Article 104226\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825001155\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001155","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于给定的图H,如果图G不包含H作为子图,我们说它是无H的。设ex(n,H) (p。exsp(n,H))表示最大大小。谱半径),Ex(n,H) (resp。Exsp(n,H))表示所有边为ex(n,H)的n顶点无H图的集合。谱半径exsp(n,H))。我们称ex(n,H) (p。exp (n,H)) Turán number (p. 0)假设我们分别知道G1,…,Gk的Turán个数的确切值。我们能否得到G1∪∪Gk的Turán个数的确切值?Moon考虑了完全图的不相交并。如果存在一条边e使得χ(G−e)<χ(G),则图G是颜色临界的。Simonovits将Moon的结果推广到足够大n的色临界图的不相交并。Erdős等人确定了Turán刚好共享一个顶点的三角形的数量。Chen等人将结果扩展到只共享一个顶点的完全图。设F是Fi的一个不相交并,其中Fi是将一个顶点与所有的顶点联结在一起得到的一个图,每个Fij都是一个色临界图。对于较大的n,我们确定了ex(n,F)和exsp(n,F)。此外,我们证明了对于这些图中的每一个F,只要n足够大,Exsp(n,F)任任(n,F),这就提供了一大类图,对Liu和Ning最近提出的一个开放问题给出了一个正答案:刻画满足Exsp(n,F)任任(n,F)的图F。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The exact Turán number of disjoint graphs– A generalization of Simonovits’ theorem, and beyond
For a given graph H, we say that a graph G is H-free if it does not contain H as a subgraph. Let ex(n,H) (resp. exsp(n,H)) denote the maximum size (resp. spectral radius) of an n-vertex H-free graph, and Ex(n,H) (resp. Exsp(n,H)) denote the set of all n-vertex H-free graphs with ex(n,H) edges (resp. spectral radius exsp(n,H)). We call ex(n,H) (resp. exsp(n,H)) the Turán number (resp. spectral Turán number) of H. Suppose that we know the exact values of Turán numbers of G1,,Gk, respectively. Can we get the exact value of the Turán number of the disjoint union of G1Gk? Moon considered the disjoint union of complete graphs. A graph G is color-critical if there exists an edge e such that χ(Ge)<χ(G). Simonovits extended Moon’s result to the disjoint union of color-critical graphs for sufficiently large n. Erdős et al. determined the Turán number of triangles sharing exactly one vertex. Chen et al. extended the result to complete graphs sharing exactly one vertex. Let F be a disjoint union of Fi, where Fi is a graph obtained by joining a vertex to all vertices of jFij and each Fij is a color-critical graph. For a large n, we determined ex(n,F) and exsp(n,F). Moreover, we show that for each F of these graphs, Exsp(n,F)Ex(n,F) provided n is sufficiently large, which provides a large class of graphs that gives a positive answer to an open problem proposed recently by Liu and Ning: Characterize graphs F satisfying Exsp(n,F)Ex(n,F).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信