基于半群扩展理论的分数阶Keller-Segel方程的存在性和正则性

IF 3.8 2区 数学 Q1 MATHEMATICS, APPLIED
Yuting Chen, Zhenbin Fan, Gang Li
{"title":"基于半群扩展理论的分数阶Keller-Segel方程的存在性和正则性","authors":"Yuting Chen,&nbsp;Zhenbin Fan,&nbsp;Gang Li","doi":"10.1016/j.cnsns.2025.109154","DOIUrl":null,"url":null,"abstract":"<div><div>This paper intends to look into the existence and regularity of the solution for the fractional Keller–Segel equation by virtue of the extended theory of semigroups, that is, the theory of resolvent families, which is one of the powerful tools for solving partial differential equations. First of all, we establish the theory of resolvent families with two parameters related to the fractional Keller–Segel equation, including the generation theorem and the estimations of resolvent families. Then, we research the existence and Hölder regularity results of the classical solution in fundamental spaces <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> by applying the theory of resolvent families with two parameters, respectively. Moreover, we attain some new <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>-<span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> estimations of the resolvent families by utilizing the Gagliardo–Nirenberg inequality, and investigate the local existence and integrability of the mild solution in fundamental spaces <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. In the end, we explore the global existence of the mild solution in fundamental spaces <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mfrac><mrow><mi>N</mi></mrow><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Compared to the results that derived from the perspective of partial differentiation, we possess some new meaningful results and findings. The results of this article can be served as supplements to those obtained using the methods of partial differentiation.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"152 ","pages":"Article 109154"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and regularity of the fractional Keller–Segel equation via the extended theory of semigroups\",\"authors\":\"Yuting Chen,&nbsp;Zhenbin Fan,&nbsp;Gang Li\",\"doi\":\"10.1016/j.cnsns.2025.109154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper intends to look into the existence and regularity of the solution for the fractional Keller–Segel equation by virtue of the extended theory of semigroups, that is, the theory of resolvent families, which is one of the powerful tools for solving partial differential equations. First of all, we establish the theory of resolvent families with two parameters related to the fractional Keller–Segel equation, including the generation theorem and the estimations of resolvent families. Then, we research the existence and Hölder regularity results of the classical solution in fundamental spaces <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> by applying the theory of resolvent families with two parameters, respectively. Moreover, we attain some new <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>-<span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> estimations of the resolvent families by utilizing the Gagliardo–Nirenberg inequality, and investigate the local existence and integrability of the mild solution in fundamental spaces <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. In the end, we explore the global existence of the mild solution in fundamental spaces <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mfrac><mrow><mi>N</mi></mrow><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Compared to the results that derived from the perspective of partial differentiation, we possess some new meaningful results and findings. The results of this article can be served as supplements to those obtained using the methods of partial differentiation.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"152 \",\"pages\":\"Article 109154\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570425005659\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425005659","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文拟利用半群的扩展理论,即可解族理论,研究分数阶Keller-Segel方程解的存在性和正则性,该理论是求解偏微分方程的有力工具之一。首先,我们建立了分数阶Keller-Segel方程的两参数可解族理论,包括可解族的生成定理和估计。然后分别应用双参数解族理论,研究了经典解在基本空间L2(TN)和Lp(RN)上的存在性和Hölder正则性结果。此外,我们利用Gagliardo-Nirenberg不等式得到了可解族的一些新的Lq-Lr估计,并研究了基本空间Lq(RN)和Lr(RN)中温和解的局部存在性和可积性。最后,我们探讨了基本空间LNα+β−2(RN)和Lr(RN)中温和解的整体存在性。与从偏微分角度得到的结果相比,我们得到了一些新的有意义的结果和发现。本文的结果可以作为用偏微分法所得结果的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and regularity of the fractional Keller–Segel equation via the extended theory of semigroups
This paper intends to look into the existence and regularity of the solution for the fractional Keller–Segel equation by virtue of the extended theory of semigroups, that is, the theory of resolvent families, which is one of the powerful tools for solving partial differential equations. First of all, we establish the theory of resolvent families with two parameters related to the fractional Keller–Segel equation, including the generation theorem and the estimations of resolvent families. Then, we research the existence and Hölder regularity results of the classical solution in fundamental spaces L2(TN) and Lp(RN) by applying the theory of resolvent families with two parameters, respectively. Moreover, we attain some new Lq-Lr estimations of the resolvent families by utilizing the Gagliardo–Nirenberg inequality, and investigate the local existence and integrability of the mild solution in fundamental spaces Lq(RN) and Lr(RN). In the end, we explore the global existence of the mild solution in fundamental spaces LNα+β2(RN) and Lr(RN). Compared to the results that derived from the perspective of partial differentiation, we possess some new meaningful results and findings. The results of this article can be served as supplements to those obtained using the methods of partial differentiation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信