{"title":"基于半群扩展理论的分数阶Keller-Segel方程的存在性和正则性","authors":"Yuting Chen, Zhenbin Fan, Gang Li","doi":"10.1016/j.cnsns.2025.109154","DOIUrl":null,"url":null,"abstract":"<div><div>This paper intends to look into the existence and regularity of the solution for the fractional Keller–Segel equation by virtue of the extended theory of semigroups, that is, the theory of resolvent families, which is one of the powerful tools for solving partial differential equations. First of all, we establish the theory of resolvent families with two parameters related to the fractional Keller–Segel equation, including the generation theorem and the estimations of resolvent families. Then, we research the existence and Hölder regularity results of the classical solution in fundamental spaces <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> by applying the theory of resolvent families with two parameters, respectively. Moreover, we attain some new <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>-<span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> estimations of the resolvent families by utilizing the Gagliardo–Nirenberg inequality, and investigate the local existence and integrability of the mild solution in fundamental spaces <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. In the end, we explore the global existence of the mild solution in fundamental spaces <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mfrac><mrow><mi>N</mi></mrow><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Compared to the results that derived from the perspective of partial differentiation, we possess some new meaningful results and findings. The results of this article can be served as supplements to those obtained using the methods of partial differentiation.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"152 ","pages":"Article 109154"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and regularity of the fractional Keller–Segel equation via the extended theory of semigroups\",\"authors\":\"Yuting Chen, Zhenbin Fan, Gang Li\",\"doi\":\"10.1016/j.cnsns.2025.109154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper intends to look into the existence and regularity of the solution for the fractional Keller–Segel equation by virtue of the extended theory of semigroups, that is, the theory of resolvent families, which is one of the powerful tools for solving partial differential equations. First of all, we establish the theory of resolvent families with two parameters related to the fractional Keller–Segel equation, including the generation theorem and the estimations of resolvent families. Then, we research the existence and Hölder regularity results of the classical solution in fundamental spaces <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> by applying the theory of resolvent families with two parameters, respectively. Moreover, we attain some new <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>-<span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> estimations of the resolvent families by utilizing the Gagliardo–Nirenberg inequality, and investigate the local existence and integrability of the mild solution in fundamental spaces <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. In the end, we explore the global existence of the mild solution in fundamental spaces <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mfrac><mrow><mi>N</mi></mrow><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Compared to the results that derived from the perspective of partial differentiation, we possess some new meaningful results and findings. The results of this article can be served as supplements to those obtained using the methods of partial differentiation.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"152 \",\"pages\":\"Article 109154\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570425005659\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425005659","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Existence and regularity of the fractional Keller–Segel equation via the extended theory of semigroups
This paper intends to look into the existence and regularity of the solution for the fractional Keller–Segel equation by virtue of the extended theory of semigroups, that is, the theory of resolvent families, which is one of the powerful tools for solving partial differential equations. First of all, we establish the theory of resolvent families with two parameters related to the fractional Keller–Segel equation, including the generation theorem and the estimations of resolvent families. Then, we research the existence and Hölder regularity results of the classical solution in fundamental spaces and by applying the theory of resolvent families with two parameters, respectively. Moreover, we attain some new - estimations of the resolvent families by utilizing the Gagliardo–Nirenberg inequality, and investigate the local existence and integrability of the mild solution in fundamental spaces and . In the end, we explore the global existence of the mild solution in fundamental spaces and . Compared to the results that derived from the perspective of partial differentiation, we possess some new meaningful results and findings. The results of this article can be served as supplements to those obtained using the methods of partial differentiation.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.