tsRNAs在程序性细胞死亡和疾病治疗中的新作用:挑战、机遇和未来方向

IF 4.7 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhe Li , Bo Zhang , Yanru Pan , Qiuyan Weng , Kefeng Hu
{"title":"tsRNAs在程序性细胞死亡和疾病治疗中的新作用:挑战、机遇和未来方向","authors":"Zhe Li ,&nbsp;Bo Zhang ,&nbsp;Yanru Pan ,&nbsp;Qiuyan Weng ,&nbsp;Kefeng Hu","doi":"10.1016/j.ncrna.2025.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>Programmed cell death (PCD), which includes various forms such as apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis, plays a pivotal role in disease pathogenesis and progression. tRNA-derived small RNAs (tsRNAs) have emerged as crucial regulators of these processes, influencing cellular fate and disease outcomes. Research has revealed diverse expression profiles of tsRNAs across various diseases, emphasizing their roles in modulating PCD pathways and their potential value in diagnosis and treatment. Specific tsRNAs can either promote or inhibit apoptosis; for example, tsRNA-3043a promotes ovarian granulosa cell apoptosis in premature ovarian insufficiency, whereas tsRNA-04002 prevents apoptosis in nucleus pulposus cells to delay intervertebral disc degeneration. Furthermore, tsRNAs serve as potential biomarkers for early disease detection, with emerging detection technologies enhancing their clinical utility. Therapeutically, tsRNA-targeted strategies, such as RNA interference and exosome-based drug delivery, offer new avenues for modulating PCD in diseases such as cancer, cardiovascular disorders, and neurodegenerative diseases. Despite challenges in understanding tsRNA biogenesis and functional diversity, their roles in regulating PCD highlight their strong potential in advancing disease diagnostics, treatment strategies, and personalized medicine.</div></div>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"15 ","pages":"Pages 65-73"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging roles of tsRNAs in programmed cell death and disease therapeutics: challenges, opportunities, and future directions\",\"authors\":\"Zhe Li ,&nbsp;Bo Zhang ,&nbsp;Yanru Pan ,&nbsp;Qiuyan Weng ,&nbsp;Kefeng Hu\",\"doi\":\"10.1016/j.ncrna.2025.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Programmed cell death (PCD), which includes various forms such as apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis, plays a pivotal role in disease pathogenesis and progression. tRNA-derived small RNAs (tsRNAs) have emerged as crucial regulators of these processes, influencing cellular fate and disease outcomes. Research has revealed diverse expression profiles of tsRNAs across various diseases, emphasizing their roles in modulating PCD pathways and their potential value in diagnosis and treatment. Specific tsRNAs can either promote or inhibit apoptosis; for example, tsRNA-3043a promotes ovarian granulosa cell apoptosis in premature ovarian insufficiency, whereas tsRNA-04002 prevents apoptosis in nucleus pulposus cells to delay intervertebral disc degeneration. Furthermore, tsRNAs serve as potential biomarkers for early disease detection, with emerging detection technologies enhancing their clinical utility. Therapeutically, tsRNA-targeted strategies, such as RNA interference and exosome-based drug delivery, offer new avenues for modulating PCD in diseases such as cancer, cardiovascular disorders, and neurodegenerative diseases. Despite challenges in understanding tsRNA biogenesis and functional diversity, their roles in regulating PCD highlight their strong potential in advancing disease diagnostics, treatment strategies, and personalized medicine.</div></div>\",\"PeriodicalId\":37653,\"journal\":{\"name\":\"Non-coding RNA Research\",\"volume\":\"15 \",\"pages\":\"Pages 65-73\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-coding RNA Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468054025000782\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-coding RNA Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468054025000782","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

程序性细胞死亡(PCD)包括凋亡、自噬、坏死坏死、焦亡和铁亡等多种形式,在疾病的发病和进展中起着关键作用。trna衍生的小rna (tsrna)已成为这些过程的关键调节因子,影响细胞命运和疾病结局。研究揭示了tsRNAs在不同疾病中的不同表达谱,强调了它们在调节PCD通路中的作用及其在诊断和治疗中的潜在价值。特异性tsRNAs可促进或抑制细胞凋亡;例如,tsRNA-3043a在卵巢功能不全早期促进卵巢颗粒细胞凋亡,而tsRNA-04002阻止髓核细胞凋亡,延缓椎间盘退变。此外,tsRNAs作为早期疾病检测的潜在生物标志物,新兴的检测技术增强了其临床应用。在治疗上,以tsrna为目标的策略,如RNA干扰和基于外泌体的药物递送,为调节PCD在癌症、心血管疾病和神经退行性疾病等疾病中的作用提供了新的途径。尽管在理解tsRNA的生物发生和功能多样性方面存在挑战,但它们在调节PCD中的作用突出了它们在推进疾病诊断、治疗策略和个性化医疗方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emerging roles of tsRNAs in programmed cell death and disease therapeutics: challenges, opportunities, and future directions
Programmed cell death (PCD), which includes various forms such as apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis, plays a pivotal role in disease pathogenesis and progression. tRNA-derived small RNAs (tsRNAs) have emerged as crucial regulators of these processes, influencing cellular fate and disease outcomes. Research has revealed diverse expression profiles of tsRNAs across various diseases, emphasizing their roles in modulating PCD pathways and their potential value in diagnosis and treatment. Specific tsRNAs can either promote or inhibit apoptosis; for example, tsRNA-3043a promotes ovarian granulosa cell apoptosis in premature ovarian insufficiency, whereas tsRNA-04002 prevents apoptosis in nucleus pulposus cells to delay intervertebral disc degeneration. Furthermore, tsRNAs serve as potential biomarkers for early disease detection, with emerging detection technologies enhancing their clinical utility. Therapeutically, tsRNA-targeted strategies, such as RNA interference and exosome-based drug delivery, offer new avenues for modulating PCD in diseases such as cancer, cardiovascular disorders, and neurodegenerative diseases. Despite challenges in understanding tsRNA biogenesis and functional diversity, their roles in regulating PCD highlight their strong potential in advancing disease diagnostics, treatment strategies, and personalized medicine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Non-coding RNA Research
Non-coding RNA Research Medicine-Biochemistry (medical)
CiteScore
7.70
自引率
6.00%
发文量
39
审稿时长
49 days
期刊介绍: Non-coding RNA Research aims to publish high quality research and review articles on the mechanistic role of non-coding RNAs in all human diseases. This interdisciplinary journal will welcome research dealing with all aspects of non-coding RNAs-their biogenesis, regulation and role in disease progression. The focus of this journal will be to publish translational studies as well as well-designed basic studies with translational and clinical implications. The non-coding RNAs of particular interest will be microRNAs (miRNAs), small interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), U-RNAs/small nuclear RNAs (snRNAs), exosomal/extracellular RNAs (exRNAs), Piwi-interacting RNAs (piRNAs) and long non-coding RNAs. Topics of interest will include, but not limited to: -Regulation of non-coding RNAs -Targets and regulatory functions of non-coding RNAs -Epigenetics and non-coding RNAs -Biological functions of non-coding RNAs -Non-coding RNAs as biomarkers -Non-coding RNA-based therapeutics -Prognostic value of non-coding RNAs -Pharmacological studies involving non-coding RNAs -Population based and epidemiological studies -Gene expression / proteomics / computational / pathway analysis-based studies on non-coding RNAs with functional validation -Novel strategies to manipulate non-coding RNAs expression and function -Clinical studies on evaluation of non-coding RNAs The journal will strive to disseminate cutting edge research, showcasing the ever-evolving importance of non-coding RNAs in modern day research and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信