{"title":"路径和循环上邦迪定理的稳定性","authors":"Bo Ning , Long-Tu Yuan","doi":"10.1016/j.jctb.2025.07.004","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the stability result of a well-known theorem of Bondy. We prove that for any 2-connected non-hamiltonian graph, if every vertex except for at most one vertex has degree at least <em>k</em>, then it contains a cycle of length at least <span><math><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></math></span> except for some special families of graphs. Our results imply several previous classical theorems including a deep and old result by Voss. We point out our result on stability in Bondy's theorem can directly imply a positive solution (in a slight stronger form) to the following problem: Is there a polynomial time algorithm to decide whether a 2-connected graph <em>G</em> on <em>n</em> vertices has a cycle of length at least <span><math><mi>min</mi><mo></mo><mo>{</mo><mn>2</mn><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo>}</mo></math></span>? This problem originally motivates the recent study on algorithmic aspects of Dirac's theorem by Fomin, Golovach, Sagunov, and Simonov, although a stronger problem was solved by them by completely different methods. Our theorem can also help us to determine all extremal graphs for wheels on odd number of vertices. We also discuss the relationship between our results and some previous problems and theorems in spectral graph theory and generalized Turán problems.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"175 ","pages":"Pages 213-239"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability in Bondy's theorem on paths and cycles\",\"authors\":\"Bo Ning , Long-Tu Yuan\",\"doi\":\"10.1016/j.jctb.2025.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the stability result of a well-known theorem of Bondy. We prove that for any 2-connected non-hamiltonian graph, if every vertex except for at most one vertex has degree at least <em>k</em>, then it contains a cycle of length at least <span><math><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></math></span> except for some special families of graphs. Our results imply several previous classical theorems including a deep and old result by Voss. We point out our result on stability in Bondy's theorem can directly imply a positive solution (in a slight stronger form) to the following problem: Is there a polynomial time algorithm to decide whether a 2-connected graph <em>G</em> on <em>n</em> vertices has a cycle of length at least <span><math><mi>min</mi><mo></mo><mo>{</mo><mn>2</mn><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo>}</mo></math></span>? This problem originally motivates the recent study on algorithmic aspects of Dirac's theorem by Fomin, Golovach, Sagunov, and Simonov, although a stronger problem was solved by them by completely different methods. Our theorem can also help us to determine all extremal graphs for wheels on odd number of vertices. We also discuss the relationship between our results and some previous problems and theorems in spectral graph theory and generalized Turán problems.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"175 \",\"pages\":\"Pages 213-239\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000528\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000528","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we study the stability result of a well-known theorem of Bondy. We prove that for any 2-connected non-hamiltonian graph, if every vertex except for at most one vertex has degree at least k, then it contains a cycle of length at least except for some special families of graphs. Our results imply several previous classical theorems including a deep and old result by Voss. We point out our result on stability in Bondy's theorem can directly imply a positive solution (in a slight stronger form) to the following problem: Is there a polynomial time algorithm to decide whether a 2-connected graph G on n vertices has a cycle of length at least ? This problem originally motivates the recent study on algorithmic aspects of Dirac's theorem by Fomin, Golovach, Sagunov, and Simonov, although a stronger problem was solved by them by completely different methods. Our theorem can also help us to determine all extremal graphs for wheels on odd number of vertices. We also discuss the relationship between our results and some previous problems and theorems in spectral graph theory and generalized Turán problems.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.