{"title":"从泰国栽培的刺毛藤叶中分离出两个新的巨藤甲苷","authors":"Jedsada Maliwong , Ingchanik Dithabumroong , Nitirat Chimnoi , Somsak Ruchirawat , Tripetch Kanchanapoom","doi":"10.1016/j.phytol.2025.103022","DOIUrl":null,"url":null,"abstract":"<div><div>Two new megastigmane glycosides, chayaionosides A (<strong>1</strong>) and B (<strong>2</strong>), together with breyniaionoside E (<strong>3</strong>), euodionoside F (<strong>4</strong>), (6<em>S</em>,9<em>S</em>)-roseoside (<strong>5</strong>), benzyl <em>O</em>-<em>β</em>-D-apiofuranosyl-(1→6)-<em>β</em>-D-glucopyranoside (<strong>6</strong>), benzyl <em>O</em>-<em>α</em>-L-rhamnopyranosyl-(1→6)-<em>β</em>-D-glucopyranoside (<strong>7</strong>), canthoside A (<strong>8</strong>), syringin (<strong>9</strong>), coniferin (<strong>10</strong>), scopolin (<strong>11</strong>), (+)-lariciresinol-4-<em>O</em>-<em>β</em>-D-glucopyranoside (<strong>12</strong>), dehydrodiconiferyl 4-<em>O</em>-<em>β</em>-D-glucopyranoside (<strong>13</strong>), kaempferol 3-<em>O</em>-<em>α</em>-L-rhamnopyranosyl-(1→2)-<em>β</em>-D-galactopyranoside (<strong>14</strong>), kaempferol 3-<em>O</em>-neohesperidoside (<strong>15</strong>), kaempferol 3-<em>O</em>-<em>α</em>-L-rhamnopyranosyl-(1→6)-<em>β</em>-D-galactopyranoside (<strong>16</strong>), kaempferol 3-<em>O</em>-rutinoside (<strong>17</strong>), drabanemoroside (<strong>18</strong>), kaempferol 3-<em>O</em>-(2″,6″-di-<em>O</em>-<em>α</em>-L-rhamnopyranosyl)-<em>β</em>-D-galactopyranoside (<strong>19</strong>), and kaempferol 3-<em>O</em>-(2″,6″-di-<em>O</em>-<em>α</em>-L-rhamnopyranosyl)-<em>β</em>-D-glucoside (<strong>20</strong>) were isolated from the leaves of <em>Cnidoscolus aconitifolius</em> cultivated in Thailand. The structural elucidations were based on physical data and spectroscopic evidence, including 1D and 2D NMR analyses.</div></div>","PeriodicalId":20408,"journal":{"name":"Phytochemistry Letters","volume":"69 ","pages":"Article 103022"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two new megastigmane glycosides from the leaves of Cnidoscolus aconitifolius cultivated in Thailand\",\"authors\":\"Jedsada Maliwong , Ingchanik Dithabumroong , Nitirat Chimnoi , Somsak Ruchirawat , Tripetch Kanchanapoom\",\"doi\":\"10.1016/j.phytol.2025.103022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Two new megastigmane glycosides, chayaionosides A (<strong>1</strong>) and B (<strong>2</strong>), together with breyniaionoside E (<strong>3</strong>), euodionoside F (<strong>4</strong>), (6<em>S</em>,9<em>S</em>)-roseoside (<strong>5</strong>), benzyl <em>O</em>-<em>β</em>-D-apiofuranosyl-(1→6)-<em>β</em>-D-glucopyranoside (<strong>6</strong>), benzyl <em>O</em>-<em>α</em>-L-rhamnopyranosyl-(1→6)-<em>β</em>-D-glucopyranoside (<strong>7</strong>), canthoside A (<strong>8</strong>), syringin (<strong>9</strong>), coniferin (<strong>10</strong>), scopolin (<strong>11</strong>), (+)-lariciresinol-4-<em>O</em>-<em>β</em>-D-glucopyranoside (<strong>12</strong>), dehydrodiconiferyl 4-<em>O</em>-<em>β</em>-D-glucopyranoside (<strong>13</strong>), kaempferol 3-<em>O</em>-<em>α</em>-L-rhamnopyranosyl-(1→2)-<em>β</em>-D-galactopyranoside (<strong>14</strong>), kaempferol 3-<em>O</em>-neohesperidoside (<strong>15</strong>), kaempferol 3-<em>O</em>-<em>α</em>-L-rhamnopyranosyl-(1→6)-<em>β</em>-D-galactopyranoside (<strong>16</strong>), kaempferol 3-<em>O</em>-rutinoside (<strong>17</strong>), drabanemoroside (<strong>18</strong>), kaempferol 3-<em>O</em>-(2″,6″-di-<em>O</em>-<em>α</em>-L-rhamnopyranosyl)-<em>β</em>-D-galactopyranoside (<strong>19</strong>), and kaempferol 3-<em>O</em>-(2″,6″-di-<em>O</em>-<em>α</em>-L-rhamnopyranosyl)-<em>β</em>-D-glucoside (<strong>20</strong>) were isolated from the leaves of <em>Cnidoscolus aconitifolius</em> cultivated in Thailand. The structural elucidations were based on physical data and spectroscopic evidence, including 1D and 2D NMR analyses.</div></div>\",\"PeriodicalId\":20408,\"journal\":{\"name\":\"Phytochemistry Letters\",\"volume\":\"69 \",\"pages\":\"Article 103022\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytochemistry Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874390025011127\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemistry Letters","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874390025011127","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
摘要
两个新的megastigmane苷,chayaionosides A(1)和(2),连同breyniaionoside E (3), euodionoside F(4),(6年代,9 s) -roseoside(5)、苄O -β-D-apiofuranosyl -(1→6)β-D-glucopyranoside(6)、苄O -α-L-rhamnopyranosyl -(1→6)β-D-glucopyranoside (7), canthoside (8), syringin (9), coniferin (10), scopolin (11), (+) -lariciresinol-4-O -β-D-glucopyranoside (12), dehydrodiconiferyl四点-β-D-glucopyranoside(13)、山柰酚3点-α-L-rhamnopyranosyl -(1→2)β-D-galactopyranoside (14),山奈酚3-O-新橙皮苷(15)、山奈酚3-O-α- l-鼠李糖基-(1→6)-β- d -半乳糖苷(16)、山奈酚3-O-芦丁苷(17)、山奈酚3-O-(2″、6″-二- o -α- l-鼠李糖基)-β- d -半乳糖苷(19)、山奈酚3-O-(2″、6″-二- o -α- l-鼠李糖基)-β- d -葡萄糖苷(20)从泰国种植的乌头木犀叶中分离得到。结构解释是基于物理数据和光谱证据,包括一维和二维核磁共振分析。
Two new megastigmane glycosides from the leaves of Cnidoscolus aconitifolius cultivated in Thailand
Two new megastigmane glycosides, chayaionosides A (1) and B (2), together with breyniaionoside E (3), euodionoside F (4), (6S,9S)-roseoside (5), benzyl O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside (6), benzyl O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside (7), canthoside A (8), syringin (9), coniferin (10), scopolin (11), (+)-lariciresinol-4-O-β-D-glucopyranoside (12), dehydrodiconiferyl 4-O-β-D-glucopyranoside (13), kaempferol 3-O-α-L-rhamnopyranosyl-(1→2)-β-D-galactopyranoside (14), kaempferol 3-O-neohesperidoside (15), kaempferol 3-O-α-L-rhamnopyranosyl-(1→6)-β-D-galactopyranoside (16), kaempferol 3-O-rutinoside (17), drabanemoroside (18), kaempferol 3-O-(2″,6″-di-O-α-L-rhamnopyranosyl)-β-D-galactopyranoside (19), and kaempferol 3-O-(2″,6″-di-O-α-L-rhamnopyranosyl)-β-D-glucoside (20) were isolated from the leaves of Cnidoscolus aconitifolius cultivated in Thailand. The structural elucidations were based on physical data and spectroscopic evidence, including 1D and 2D NMR analyses.
期刊介绍:
Phytochemistry Letters invites rapid communications on all aspects of natural product research including:
• Structural elucidation of natural products
• Analytical evaluation of herbal medicines
• Clinical efficacy, safety and pharmacovigilance of herbal medicines
• Natural product biosynthesis
• Natural product synthesis and chemical modification
• Natural product metabolism
• Chemical ecology
• Biotechnology
• Bioassay-guided isolation
• Pharmacognosy
• Pharmacology of natural products
• Metabolomics
• Ethnobotany and traditional usage
• Genetics of natural products
Manuscripts that detail the isolation of just one new compound are not substantial enough to be sent out of review and are out of scope. Furthermore, where pharmacology has been performed on one new compound to increase the amount of novel data, the pharmacology must be substantial and/or related to the medicinal use of the producing organism.