S. Surya , Sakthivel Pandurengan , S. Gokul Raj , G. Ramesh Kumar
{"title":"光学用纳米氧化钇(Y2O3)的物相、结构和热力学分析","authors":"S. Surya , Sakthivel Pandurengan , S. Gokul Raj , G. Ramesh Kumar","doi":"10.1016/j.rinp.2025.108377","DOIUrl":null,"url":null,"abstract":"<div><div>This research work targets on the production of Nanocrystalline yttrium oxide (Y₂O₃) Quantum Dots (QDs) where Quantum Confinement Effect plays a vital role on account of varying the annealing temperature and focuses on exploring the thermodynamics of the different sized Y₂O₃ Nanocrystalline QDs. Nanocrystalline yttrium oxide (Y₂O₃) was synthesized using a simple, one-step precipitation method and the resulting powder was annealed at various temperatures 500, 750 and 1000 °C. Simultaneous Thermogravimetric analysis and Differential Scanning Calorimetry (TG-DSC) analysis were performed to monitor the phase transformation of the Y₂O₃ nanoparticles (NPs) from amorphous to crystalline states. By varying the heating rates (5, 10, 15, and 20 °C/min), the activation energy for crystallization was calculated using kinetic models such as Kissinger and Ozawa. Powder X-ray diffraction (XRD) analysis confirmed the formation of single-phase Y₂O₃ nanoparticles in which the annealed samples exhibited a cubic structure corresponding to the Ia3 space group, in good agreement with the standard JCPDS pattern No. 41-1105. Annealing to higher temperatures led to an increase in crystallite size, which was estimated using the Scherrer formula to range between 5 to 12 nm in which the annealed Y₂O₃ nanoparticles at 500 °C shows the least crystallite size of 5 nm. The micro strain (ε), arising from thermal expansion and contraction, was evaluated using the Williamson–Hall (W–H) plot. UV–Visible absorption spectroscopy revealed good transparency in the UV–Vis region; using the absorption coefficient (α), the Tauc’s plot indicated a wide band gap for the material. Photoluminescence (PL) analysis were carried out for asprepared and annealed samples which shows that the emission intensity increase with respect to the increase in annealing temperature. Additionally, Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were employed to study the chemical bonding and oxidation states of the Y₂O₃ nanoparticles, respectively. The morphology and the size of the synthesized as prepared samples and the samples annealed at various calcination temperatures were visualized using Scanning electron microscope (SEM) and Transmission electron microscope (TEM) and the results were discussed in detailed</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"76 ","pages":"Article 108377"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase, structural and thermodynamic analysis of nanocrystalline yttrium oxide (Y2O3) for optical applications\",\"authors\":\"S. Surya , Sakthivel Pandurengan , S. Gokul Raj , G. Ramesh Kumar\",\"doi\":\"10.1016/j.rinp.2025.108377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research work targets on the production of Nanocrystalline yttrium oxide (Y₂O₃) Quantum Dots (QDs) where Quantum Confinement Effect plays a vital role on account of varying the annealing temperature and focuses on exploring the thermodynamics of the different sized Y₂O₃ Nanocrystalline QDs. Nanocrystalline yttrium oxide (Y₂O₃) was synthesized using a simple, one-step precipitation method and the resulting powder was annealed at various temperatures 500, 750 and 1000 °C. Simultaneous Thermogravimetric analysis and Differential Scanning Calorimetry (TG-DSC) analysis were performed to monitor the phase transformation of the Y₂O₃ nanoparticles (NPs) from amorphous to crystalline states. By varying the heating rates (5, 10, 15, and 20 °C/min), the activation energy for crystallization was calculated using kinetic models such as Kissinger and Ozawa. Powder X-ray diffraction (XRD) analysis confirmed the formation of single-phase Y₂O₃ nanoparticles in which the annealed samples exhibited a cubic structure corresponding to the Ia3 space group, in good agreement with the standard JCPDS pattern No. 41-1105. Annealing to higher temperatures led to an increase in crystallite size, which was estimated using the Scherrer formula to range between 5 to 12 nm in which the annealed Y₂O₃ nanoparticles at 500 °C shows the least crystallite size of 5 nm. The micro strain (ε), arising from thermal expansion and contraction, was evaluated using the Williamson–Hall (W–H) plot. UV–Visible absorption spectroscopy revealed good transparency in the UV–Vis region; using the absorption coefficient (α), the Tauc’s plot indicated a wide band gap for the material. Photoluminescence (PL) analysis were carried out for asprepared and annealed samples which shows that the emission intensity increase with respect to the increase in annealing temperature. Additionally, Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were employed to study the chemical bonding and oxidation states of the Y₂O₃ nanoparticles, respectively. The morphology and the size of the synthesized as prepared samples and the samples annealed at various calcination temperatures were visualized using Scanning electron microscope (SEM) and Transmission electron microscope (TEM) and the results were discussed in detailed</div></div>\",\"PeriodicalId\":21042,\"journal\":{\"name\":\"Results in Physics\",\"volume\":\"76 \",\"pages\":\"Article 108377\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211379725002712\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379725002712","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Phase, structural and thermodynamic analysis of nanocrystalline yttrium oxide (Y2O3) for optical applications
This research work targets on the production of Nanocrystalline yttrium oxide (Y₂O₃) Quantum Dots (QDs) where Quantum Confinement Effect plays a vital role on account of varying the annealing temperature and focuses on exploring the thermodynamics of the different sized Y₂O₃ Nanocrystalline QDs. Nanocrystalline yttrium oxide (Y₂O₃) was synthesized using a simple, one-step precipitation method and the resulting powder was annealed at various temperatures 500, 750 and 1000 °C. Simultaneous Thermogravimetric analysis and Differential Scanning Calorimetry (TG-DSC) analysis were performed to monitor the phase transformation of the Y₂O₃ nanoparticles (NPs) from amorphous to crystalline states. By varying the heating rates (5, 10, 15, and 20 °C/min), the activation energy for crystallization was calculated using kinetic models such as Kissinger and Ozawa. Powder X-ray diffraction (XRD) analysis confirmed the formation of single-phase Y₂O₃ nanoparticles in which the annealed samples exhibited a cubic structure corresponding to the Ia3 space group, in good agreement with the standard JCPDS pattern No. 41-1105. Annealing to higher temperatures led to an increase in crystallite size, which was estimated using the Scherrer formula to range between 5 to 12 nm in which the annealed Y₂O₃ nanoparticles at 500 °C shows the least crystallite size of 5 nm. The micro strain (ε), arising from thermal expansion and contraction, was evaluated using the Williamson–Hall (W–H) plot. UV–Visible absorption spectroscopy revealed good transparency in the UV–Vis region; using the absorption coefficient (α), the Tauc’s plot indicated a wide band gap for the material. Photoluminescence (PL) analysis were carried out for asprepared and annealed samples which shows that the emission intensity increase with respect to the increase in annealing temperature. Additionally, Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were employed to study the chemical bonding and oxidation states of the Y₂O₃ nanoparticles, respectively. The morphology and the size of the synthesized as prepared samples and the samples annealed at various calcination temperatures were visualized using Scanning electron microscope (SEM) and Transmission electron microscope (TEM) and the results were discussed in detailed
Results in PhysicsMATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍:
Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics.
Results in Physics welcomes three types of papers:
1. Full research papers
2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as:
- Data and/or a plot plus a description
- Description of a new method or instrumentation
- Negative results
- Concept or design study
3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.