创新矿物碳酸化技术:超声辅助加工、机理见解、优化策略和环境影响的综合综述

Xun Sun , Haozhen Xu , Sivakumar Manickam , Rakesh Kumar Gupta , Giancarlo Cravotto , Joon Yong Yoon , Benlong Wang , Wenlong Wang , Di Sun
{"title":"创新矿物碳酸化技术:超声辅助加工、机理见解、优化策略和环境影响的综合综述","authors":"Xun Sun ,&nbsp;Haozhen Xu ,&nbsp;Sivakumar Manickam ,&nbsp;Rakesh Kumar Gupta ,&nbsp;Giancarlo Cravotto ,&nbsp;Joon Yong Yoon ,&nbsp;Benlong Wang ,&nbsp;Wenlong Wang ,&nbsp;Di Sun","doi":"10.1016/j.ccst.2025.100469","DOIUrl":null,"url":null,"abstract":"<div><div>Worldwide efforts are focused on reducing CO<sub>2</sub> emissions and improving CO<sub>2</sub> capture, utilization, and sequestration. Ultrasound-assisted processing (UAP), utilizing acoustic cavitation (AC), emerges as a promising, eco-friendly technology to enhance CO<sub>2</sub> sequestration. This overview highlights recent progress in UAP for mineral carbonation, covering intensification mechanisms, sonochemical reactors, and the impact of UAP factors (frequency, power, temperature, particle size, duration, pH). High temperatures (5000 K) and pressures (1000 atm) from AC generate hydroxyl radicals, boosting mass transfer and reaction rates while preventing passivating layer formation. These factors accelerate CO<sub>2</sub> sequestration. UAP can increase carbonation/leaching rates by 10–40% with lower energy consumption and milder conditions than conventional methods like high-temperature reactors. However, further research is needed to improve economic efficiency and scalability, as key challenges include controlling acoustic field uniformity, ensuring consistent performance across varying mineral types, and integrating UAP with existing industrial infrastructure.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"16 ","pages":"Article 100469"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative mineral carbonation techniques: A comprehensive review of ultrasound-assisted processing, mechanistic insights, optimization strategies, and environmental impacts\",\"authors\":\"Xun Sun ,&nbsp;Haozhen Xu ,&nbsp;Sivakumar Manickam ,&nbsp;Rakesh Kumar Gupta ,&nbsp;Giancarlo Cravotto ,&nbsp;Joon Yong Yoon ,&nbsp;Benlong Wang ,&nbsp;Wenlong Wang ,&nbsp;Di Sun\",\"doi\":\"10.1016/j.ccst.2025.100469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Worldwide efforts are focused on reducing CO<sub>2</sub> emissions and improving CO<sub>2</sub> capture, utilization, and sequestration. Ultrasound-assisted processing (UAP), utilizing acoustic cavitation (AC), emerges as a promising, eco-friendly technology to enhance CO<sub>2</sub> sequestration. This overview highlights recent progress in UAP for mineral carbonation, covering intensification mechanisms, sonochemical reactors, and the impact of UAP factors (frequency, power, temperature, particle size, duration, pH). High temperatures (5000 K) and pressures (1000 atm) from AC generate hydroxyl radicals, boosting mass transfer and reaction rates while preventing passivating layer formation. These factors accelerate CO<sub>2</sub> sequestration. UAP can increase carbonation/leaching rates by 10–40% with lower energy consumption and milder conditions than conventional methods like high-temperature reactors. However, further research is needed to improve economic efficiency and scalability, as key challenges include controlling acoustic field uniformity, ensuring consistent performance across varying mineral types, and integrating UAP with existing industrial infrastructure.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"16 \",\"pages\":\"Article 100469\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656825001083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825001083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全世界的努力都集中在减少二氧化碳排放和改善二氧化碳的捕获、利用和封存。超声辅助处理(UAP)是一种利用声空化(AC)的有前途的环保技术,可以增强二氧化碳的封存。本文概述了UAP用于矿物碳酸化的最新进展,包括增强机制,声化学反应器以及UAP因素(频率,功率,温度,粒径,持续时间,pH值)的影响。高温(5000 K)和高压(1000 atm)从AC产生羟基自由基,提高传质和反应速率,同时防止钝化层的形成。这些因素加速了二氧化碳的固存。与高温反应器等传统方法相比,UAP可以在更低的能耗和更温和的条件下将碳化/浸出率提高10-40%。然而,需要进一步的研究来提高经济效率和可扩展性,因为关键的挑战包括控制声场均匀性,确保不同矿物类型的一致性能,以及将UAP与现有工业基础设施集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Innovative mineral carbonation techniques: A comprehensive review of ultrasound-assisted processing, mechanistic insights, optimization strategies, and environmental impacts

Innovative mineral carbonation techniques: A comprehensive review of ultrasound-assisted processing, mechanistic insights, optimization strategies, and environmental impacts
Worldwide efforts are focused on reducing CO2 emissions and improving CO2 capture, utilization, and sequestration. Ultrasound-assisted processing (UAP), utilizing acoustic cavitation (AC), emerges as a promising, eco-friendly technology to enhance CO2 sequestration. This overview highlights recent progress in UAP for mineral carbonation, covering intensification mechanisms, sonochemical reactors, and the impact of UAP factors (frequency, power, temperature, particle size, duration, pH). High temperatures (5000 K) and pressures (1000 atm) from AC generate hydroxyl radicals, boosting mass transfer and reaction rates while preventing passivating layer formation. These factors accelerate CO2 sequestration. UAP can increase carbonation/leaching rates by 10–40% with lower energy consumption and milder conditions than conventional methods like high-temperature reactors. However, further research is needed to improve economic efficiency and scalability, as key challenges include controlling acoustic field uniformity, ensuring consistent performance across varying mineral types, and integrating UAP with existing industrial infrastructure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信