尿素- tris掺杂3D石墨烯用于高稳定性超级电容器

IF 4.2 3区 工程技术 Q2 ELECTROCHEMISTRY
Xuanhe Liu , Baiqing Sun , Lehao Lin , Gaimei Zhang , Hui Li , Jiazi Shi , Min Wu , Dongdong Wang , Jiandong Lu , Kang Du , Xiaoli Song
{"title":"尿素- tris掺杂3D石墨烯用于高稳定性超级电容器","authors":"Xuanhe Liu ,&nbsp;Baiqing Sun ,&nbsp;Lehao Lin ,&nbsp;Gaimei Zhang ,&nbsp;Hui Li ,&nbsp;Jiazi Shi ,&nbsp;Min Wu ,&nbsp;Dongdong Wang ,&nbsp;Jiandong Lu ,&nbsp;Kang Du ,&nbsp;Xiaoli Song","doi":"10.1016/j.elecom.2025.108004","DOIUrl":null,"url":null,"abstract":"<div><div>The commercialization of supercapacitors hinges critically on developing low-cost electrode materials capable of simultaneously delivering high energy density and long-term stability. To address this challenge, we developed a dual‑nitrogen doping strategy using tris(hydroxymethyl)aminomethane (Tris) and urea to fabricate three-dimensional nitrogen-doped graphene (URNG) through a one-step hydrothermal process. Characterization of the material reveals that the optimized nitrogen conformation of URNG has a 2.07 % increase in pyrrole-N content compared to single nitrogen-source doped graphene (NG), a change that significantly enhances the charge storage capacity while maintaining structural integrity. Electrochemical measurements demonstrate that the assembled symmetric supercapacitor achieves a high energy density of 57.2 Wh·kg<sup>−1</sup> at a power density of 670 W·kg<sup>−1</sup>. The URNG electrodes deliver a specific capacitance of 194.2 F·g<sup>−1</sup> at 0.5 A·g<sup>−1</sup> (17.1 % higher than NG) while maintaining 87 % capacitance retention after 5000 cycles. The practical applicability of this material was successfully demonstrated by powering a 1.8 V LED device. This work not only provides a facile synthesis strategy but also offers fundamental insights into nitrogen configuration control for advanced energy storage systems.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"179 ","pages":"Article 108004"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urea-Tris doped 3D graphene for high-stability supercapacitors\",\"authors\":\"Xuanhe Liu ,&nbsp;Baiqing Sun ,&nbsp;Lehao Lin ,&nbsp;Gaimei Zhang ,&nbsp;Hui Li ,&nbsp;Jiazi Shi ,&nbsp;Min Wu ,&nbsp;Dongdong Wang ,&nbsp;Jiandong Lu ,&nbsp;Kang Du ,&nbsp;Xiaoli Song\",\"doi\":\"10.1016/j.elecom.2025.108004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The commercialization of supercapacitors hinges critically on developing low-cost electrode materials capable of simultaneously delivering high energy density and long-term stability. To address this challenge, we developed a dual‑nitrogen doping strategy using tris(hydroxymethyl)aminomethane (Tris) and urea to fabricate three-dimensional nitrogen-doped graphene (URNG) through a one-step hydrothermal process. Characterization of the material reveals that the optimized nitrogen conformation of URNG has a 2.07 % increase in pyrrole-N content compared to single nitrogen-source doped graphene (NG), a change that significantly enhances the charge storage capacity while maintaining structural integrity. Electrochemical measurements demonstrate that the assembled symmetric supercapacitor achieves a high energy density of 57.2 Wh·kg<sup>−1</sup> at a power density of 670 W·kg<sup>−1</sup>. The URNG electrodes deliver a specific capacitance of 194.2 F·g<sup>−1</sup> at 0.5 A·g<sup>−1</sup> (17.1 % higher than NG) while maintaining 87 % capacitance retention after 5000 cycles. The practical applicability of this material was successfully demonstrated by powering a 1.8 V LED device. This work not only provides a facile synthesis strategy but also offers fundamental insights into nitrogen configuration control for advanced energy storage systems.</div></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"179 \",\"pages\":\"Article 108004\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248125001432\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125001432","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

超级电容器的商业化关键取决于开发能够同时提供高能量密度和长期稳定性的低成本电极材料。为了解决这一挑战,我们开发了一种双氮掺杂策略,使用三甲基氨基甲烷(tris)和尿素通过一步水热工艺制备三维氮掺杂石墨烯(URNG)。对材料的表征表明,优化后的URNG的氮构象与单一氮源掺杂石墨烯(NG)相比,吡咯- n含量增加了2.07%,这一变化在保持结构完整性的同时显著提高了电荷存储能力。电化学测量表明,在670 W·kg - 1的功率密度下,组装的对称超级电容器获得了57.2 Wh·kg - 1的高能量密度。URNG电极在0.5 a·g−1时的比电容为194.2 F·g−1(比NG高17.1%),在5000次循环后保持87%的电容保持率。通过为1.8 V LED器件供电,成功证明了该材料的实用性。这项工作不仅提供了一个简单的合成策略,而且为先进的储能系统提供了氮配置控制的基本见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Urea-Tris doped 3D graphene for high-stability supercapacitors

Urea-Tris doped 3D graphene for high-stability supercapacitors
The commercialization of supercapacitors hinges critically on developing low-cost electrode materials capable of simultaneously delivering high energy density and long-term stability. To address this challenge, we developed a dual‑nitrogen doping strategy using tris(hydroxymethyl)aminomethane (Tris) and urea to fabricate three-dimensional nitrogen-doped graphene (URNG) through a one-step hydrothermal process. Characterization of the material reveals that the optimized nitrogen conformation of URNG has a 2.07 % increase in pyrrole-N content compared to single nitrogen-source doped graphene (NG), a change that significantly enhances the charge storage capacity while maintaining structural integrity. Electrochemical measurements demonstrate that the assembled symmetric supercapacitor achieves a high energy density of 57.2 Wh·kg−1 at a power density of 670 W·kg−1. The URNG electrodes deliver a specific capacitance of 194.2 F·g−1 at 0.5 A·g−1 (17.1 % higher than NG) while maintaining 87 % capacitance retention after 5000 cycles. The practical applicability of this material was successfully demonstrated by powering a 1.8 V LED device. This work not only provides a facile synthesis strategy but also offers fundamental insights into nitrogen configuration control for advanced energy storage systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信