MIKTA海事研究差距:可持续合作的数据驱动机器学习方法

IF 6.3 2区 工程技术 Q1 ECONOMICS
Yong-Jae Lee
{"title":"MIKTA海事研究差距:可持续合作的数据驱动机器学习方法","authors":"Yong-Jae Lee","doi":"10.1016/j.jtrangeo.2025.104375","DOIUrl":null,"url":null,"abstract":"<div><div>The maritime industry is a cornerstone of global trade but faces significant sustainability challenges. International collaboration is crucial to address these issues, particularly for middle-income nations like MIKTA countries. This study employs a data analytics and machine learning approach to identify potential areas for collaborative research in sustainable maritime technology within MIKTA. By utilizing Latent Dirichlet Allocation (LDA) topic modeling, we categorized research papers into sub-fields and identified potential collaborations. Network and self-organizing map (SOM) analyses further refined these findings, revealing three priority areas with high collaboration potential but limited research: (1) developing a Sustainable Maritime Economy Realization Model (Indonesia-Korea), (2) creating an environmentally friendly and efficient port operation system (Mexico-Australia), and (3) establishing a Sustainable Management System for port workforce safety and health (Indonesia-Turkey). These insights can inform research and policy agendas, accelerating the development and adoption of sustainable maritime technologies within MIKTA and contributing to global maritime sustainability.</div></div>","PeriodicalId":48413,"journal":{"name":"Journal of Transport Geography","volume":"128 ","pages":"Article 104375"},"PeriodicalIF":6.3000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MIKTA maritime research gaps: Data-driven machine learning approach for sustainable collaboration\",\"authors\":\"Yong-Jae Lee\",\"doi\":\"10.1016/j.jtrangeo.2025.104375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The maritime industry is a cornerstone of global trade but faces significant sustainability challenges. International collaboration is crucial to address these issues, particularly for middle-income nations like MIKTA countries. This study employs a data analytics and machine learning approach to identify potential areas for collaborative research in sustainable maritime technology within MIKTA. By utilizing Latent Dirichlet Allocation (LDA) topic modeling, we categorized research papers into sub-fields and identified potential collaborations. Network and self-organizing map (SOM) analyses further refined these findings, revealing three priority areas with high collaboration potential but limited research: (1) developing a Sustainable Maritime Economy Realization Model (Indonesia-Korea), (2) creating an environmentally friendly and efficient port operation system (Mexico-Australia), and (3) establishing a Sustainable Management System for port workforce safety and health (Indonesia-Turkey). These insights can inform research and policy agendas, accelerating the development and adoption of sustainable maritime technologies within MIKTA and contributing to global maritime sustainability.</div></div>\",\"PeriodicalId\":48413,\"journal\":{\"name\":\"Journal of Transport Geography\",\"volume\":\"128 \",\"pages\":\"Article 104375\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Transport Geography\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966692325002662\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Transport Geography","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966692325002662","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

海运业是全球贸易的基石,但面临着重大的可持续性挑战。国际合作对于解决这些问题至关重要,特别是对于像MIKTA国家这样的中等收入国家。本研究采用数据分析和机器学习方法来确定MIKTA内部可持续海事技术合作研究的潜在领域。通过使用潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)主题建模,我们将研究论文分类到子领域,并确定潜在的合作。网络和自组织地图(SOM)分析进一步完善了这些发现,揭示了三个具有高合作潜力但研究有限的优先领域:(1)开发可持续海洋经济实现模型(印度尼西亚-韩国),(2)创建环境友好和高效的港口运营系统(墨西哥-澳大利亚),(3)建立港口劳动力安全和健康的可持续管理系统(印度尼西亚-土耳其)。这些见解可以为研究和政策议程提供信息,加速MIKTA内部可持续海事技术的开发和采用,并为全球海事可持续性做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MIKTA maritime research gaps: Data-driven machine learning approach for sustainable collaboration
The maritime industry is a cornerstone of global trade but faces significant sustainability challenges. International collaboration is crucial to address these issues, particularly for middle-income nations like MIKTA countries. This study employs a data analytics and machine learning approach to identify potential areas for collaborative research in sustainable maritime technology within MIKTA. By utilizing Latent Dirichlet Allocation (LDA) topic modeling, we categorized research papers into sub-fields and identified potential collaborations. Network and self-organizing map (SOM) analyses further refined these findings, revealing three priority areas with high collaboration potential but limited research: (1) developing a Sustainable Maritime Economy Realization Model (Indonesia-Korea), (2) creating an environmentally friendly and efficient port operation system (Mexico-Australia), and (3) establishing a Sustainable Management System for port workforce safety and health (Indonesia-Turkey). These insights can inform research and policy agendas, accelerating the development and adoption of sustainable maritime technologies within MIKTA and contributing to global maritime sustainability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.50
自引率
11.50%
发文量
197
期刊介绍: A major resurgence has occurred in transport geography in the wake of political and policy changes, huge transport infrastructure projects and responses to urban traffic congestion. The Journal of Transport Geography provides a central focus for developments in this rapidly expanding sub-discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信