强耦合波动方程空间离散化的均匀间接边界可观测性

Q1 Mathematics
Abderrahim El Ayboudi , Radoine Belkanoufi , Abdelkarim Hajjaj
{"title":"强耦合波动方程空间离散化的均匀间接边界可观测性","authors":"Abderrahim El Ayboudi ,&nbsp;Radoine Belkanoufi ,&nbsp;Abdelkarim Hajjaj","doi":"10.1016/j.padiff.2025.101261","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the indirect boundary observability properties of one-dimensional strongly coupled wave equations in an approximated setting. Classical numerical discretization methods, such as finite differences and finite elements, typically fail to maintain uniform observability inequalities when applied to wave systems. This failure is primarily attributed to the emergence of high-frequency numerical solutions. The present work demonstrates a different approach through the implementation of these discretization schemes on a carefully designed non-uniform mesh. This study successfully establishes uniform observability inequalities for the coupled system. This methodology effectively recovers the system’s total energy through boundary observations, overcoming the well-documented limitations of traditional numerical approaches in wave equation systems.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101261"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform indirect boundary observability for a spatial discretization of strongly coupled wave equations\",\"authors\":\"Abderrahim El Ayboudi ,&nbsp;Radoine Belkanoufi ,&nbsp;Abdelkarim Hajjaj\",\"doi\":\"10.1016/j.padiff.2025.101261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the indirect boundary observability properties of one-dimensional strongly coupled wave equations in an approximated setting. Classical numerical discretization methods, such as finite differences and finite elements, typically fail to maintain uniform observability inequalities when applied to wave systems. This failure is primarily attributed to the emergence of high-frequency numerical solutions. The present work demonstrates a different approach through the implementation of these discretization schemes on a carefully designed non-uniform mesh. This study successfully establishes uniform observability inequalities for the coupled system. This methodology effectively recovers the system’s total energy through boundary observations, overcoming the well-documented limitations of traditional numerical approaches in wave equation systems.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"15 \",\"pages\":\"Article 101261\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125001883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

研究了一维强耦合波动方程在近似情况下的间接边界可观测性。经典的数值离散化方法,如有限差分和有限单元,在应用于波系统时通常不能保持均匀的可观测性不等式。这种失败主要归因于高频数值解的出现。通过在精心设计的非均匀网格上实现这些离散化方案,本工作展示了一种不同的方法。本文成功地建立了耦合系统的一致可观测性不等式。该方法通过边界观测有效地恢复了系统的总能量,克服了传统数值方法在波动方程系统中的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform indirect boundary observability for a spatial discretization of strongly coupled wave equations
This paper investigates the indirect boundary observability properties of one-dimensional strongly coupled wave equations in an approximated setting. Classical numerical discretization methods, such as finite differences and finite elements, typically fail to maintain uniform observability inequalities when applied to wave systems. This failure is primarily attributed to the emergence of high-frequency numerical solutions. The present work demonstrates a different approach through the implementation of these discretization schemes on a carefully designed non-uniform mesh. This study successfully establishes uniform observability inequalities for the coupled system. This methodology effectively recovers the system’s total energy through boundary observations, overcoming the well-documented limitations of traditional numerical approaches in wave equation systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信