Alicia Sampieri , Alexander Asanov , Aaron Pavel Rodríguez-Hernández , Ileana Tobías-Juárez , Daniel Martínez-Flores , Luis Vaca
{"title":"化学而非机械刺激可降低TRPA1通道的横向流动性","authors":"Alicia Sampieri , Alexander Asanov , Aaron Pavel Rodríguez-Hernández , Ileana Tobías-Juárez , Daniel Martínez-Flores , Luis Vaca","doi":"10.1016/j.ceca.2025.103059","DOIUrl":null,"url":null,"abstract":"<div><div>The transient Receptor Potential Ankyrin 1 (TRPA1) is a member from the TRP superfamily of ion channels. TRPA1 channels are calcium-permeable nonselective cation channels, which are highly conserved throughout the animal kingdom. Mammals have only one member (TRPA1), while zebrafish has two (TRPA1a and TRPA1b). TRPA1 channels are activated by a plethora of stimuli, including noxious cold, mechanical stimulation, calcium, pH, reactive oxygen, and carbonyl species. In the present study we characterize the modulation of TRPA1b channel lateral mobility by Allyl isothiocyanate (AITC) and mechanical stimulation. We show that only AITC stimulation alters channel diffusion at the plasma membrane.</div></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"131 ","pages":"Article 103059"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical but not mechanical stimulation reduce TRPA1 channel lateral mobility\",\"authors\":\"Alicia Sampieri , Alexander Asanov , Aaron Pavel Rodríguez-Hernández , Ileana Tobías-Juárez , Daniel Martínez-Flores , Luis Vaca\",\"doi\":\"10.1016/j.ceca.2025.103059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The transient Receptor Potential Ankyrin 1 (TRPA1) is a member from the TRP superfamily of ion channels. TRPA1 channels are calcium-permeable nonselective cation channels, which are highly conserved throughout the animal kingdom. Mammals have only one member (TRPA1), while zebrafish has two (TRPA1a and TRPA1b). TRPA1 channels are activated by a plethora of stimuli, including noxious cold, mechanical stimulation, calcium, pH, reactive oxygen, and carbonyl species. In the present study we characterize the modulation of TRPA1b channel lateral mobility by Allyl isothiocyanate (AITC) and mechanical stimulation. We show that only AITC stimulation alters channel diffusion at the plasma membrane.</div></div>\",\"PeriodicalId\":9678,\"journal\":{\"name\":\"Cell calcium\",\"volume\":\"131 \",\"pages\":\"Article 103059\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell calcium\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143416025000685\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell calcium","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143416025000685","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Chemical but not mechanical stimulation reduce TRPA1 channel lateral mobility
The transient Receptor Potential Ankyrin 1 (TRPA1) is a member from the TRP superfamily of ion channels. TRPA1 channels are calcium-permeable nonselective cation channels, which are highly conserved throughout the animal kingdom. Mammals have only one member (TRPA1), while zebrafish has two (TRPA1a and TRPA1b). TRPA1 channels are activated by a plethora of stimuli, including noxious cold, mechanical stimulation, calcium, pH, reactive oxygen, and carbonyl species. In the present study we characterize the modulation of TRPA1b channel lateral mobility by Allyl isothiocyanate (AITC) and mechanical stimulation. We show that only AITC stimulation alters channel diffusion at the plasma membrane.
期刊介绍:
Cell Calcium covers the field of calcium metabolism and signalling in living systems, from aspects including inorganic chemistry, physiology, molecular biology and pathology. Topic themes include:
Roles of calcium in regulating cellular events such as apoptosis, necrosis and organelle remodelling
Influence of calcium regulation in affecting health and disease outcomes