Zichen Xi , Zhihao Yao , Jiahui Huang , Zi-Qi Lu , Hongyu Yan , Tai-Jiang Mu , Zhigang Wang , Qun-Ce Xu
{"title":"TerraCraft:使用自然语言的城市规模生成过程建模","authors":"Zichen Xi , Zhihao Yao , Jiahui Huang , Zi-Qi Lu , Hongyu Yan , Tai-Jiang Mu , Zhigang Wang , Qun-Ce Xu","doi":"10.1016/j.gmod.2025.101285","DOIUrl":null,"url":null,"abstract":"<div><div>Automated generation of large-scale 3D scenes presents a significant challenge due to the resource-intensive training and datasets required. This is in sharp contrast to the 2D counterparts that have become readily available due to their superior speed and quality. However, prior work in 3D procedural modeling has demonstrated promise in generating high-quality assets using the combination of algorithms and user-defined rules. To leverage the best of both 2D generative models and procedural modeling tools, we present TerraCraft, a novel framework for generating geometrically high-quality 3D city-scale scenes. By utilizing Large Language Models (LLMs), TerraCraft can generate city-scale 3D scenes from natural text descriptions. With its intuitive operation and powerful capabilities, TerraCraft enables users to easily create geometrically high-quality scenes readily for various applications, such as virtual reality and game design. We validate TerraCraft’s effectiveness through extensive experiments and user studies, showing its superior performance compared to existing baselines.</div></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"141 ","pages":"Article 101285"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TerraCraft: City-scale generative procedural modeling with natural languages\",\"authors\":\"Zichen Xi , Zhihao Yao , Jiahui Huang , Zi-Qi Lu , Hongyu Yan , Tai-Jiang Mu , Zhigang Wang , Qun-Ce Xu\",\"doi\":\"10.1016/j.gmod.2025.101285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Automated generation of large-scale 3D scenes presents a significant challenge due to the resource-intensive training and datasets required. This is in sharp contrast to the 2D counterparts that have become readily available due to their superior speed and quality. However, prior work in 3D procedural modeling has demonstrated promise in generating high-quality assets using the combination of algorithms and user-defined rules. To leverage the best of both 2D generative models and procedural modeling tools, we present TerraCraft, a novel framework for generating geometrically high-quality 3D city-scale scenes. By utilizing Large Language Models (LLMs), TerraCraft can generate city-scale 3D scenes from natural text descriptions. With its intuitive operation and powerful capabilities, TerraCraft enables users to easily create geometrically high-quality scenes readily for various applications, such as virtual reality and game design. We validate TerraCraft’s effectiveness through extensive experiments and user studies, showing its superior performance compared to existing baselines.</div></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"141 \",\"pages\":\"Article 101285\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070325000323\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070325000323","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
TerraCraft: City-scale generative procedural modeling with natural languages
Automated generation of large-scale 3D scenes presents a significant challenge due to the resource-intensive training and datasets required. This is in sharp contrast to the 2D counterparts that have become readily available due to their superior speed and quality. However, prior work in 3D procedural modeling has demonstrated promise in generating high-quality assets using the combination of algorithms and user-defined rules. To leverage the best of both 2D generative models and procedural modeling tools, we present TerraCraft, a novel framework for generating geometrically high-quality 3D city-scale scenes. By utilizing Large Language Models (LLMs), TerraCraft can generate city-scale 3D scenes from natural text descriptions. With its intuitive operation and powerful capabilities, TerraCraft enables users to easily create geometrically high-quality scenes readily for various applications, such as virtual reality and game design. We validate TerraCraft’s effectiveness through extensive experiments and user studies, showing its superior performance compared to existing baselines.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.