Tim Wittig , Birte Winther , Charlene Reichl , Andrej Schmidt , Dierk Scheinert , Sabine Steiner
{"title":"光声成像在下肢血运重建术中的应用:评估围手术期肌肉灌注的新技术","authors":"Tim Wittig , Birte Winther , Charlene Reichl , Andrej Schmidt , Dierk Scheinert , Sabine Steiner","doi":"10.1016/j.pacs.2025.100756","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>This proof-of-concept study aimed to assess the feasibility of Multispectral Optoacoustic Tomography (MSOT) in evaluating changes in oxygenated hemoglobin (HbO2) levels in muscles of the lower limb before and after lower extremity revascularization (LER).</div></div><div><h3>Methods</h3><div>In 26 patients, HbO2 levels were assessed before and after LER, with follow-up assessing symptom control and patency for up to six months.</div></div><div><h3>Results</h3><div>A significant difference in HbO2 levels was observed between pre- and post-LER in the muscles of the lower limb. In 10 patients, HbO2 levels did not increase following LER, and at the 6-month follow-up, 2 of these patients required target lesion revascularization (TLR) due to restenosis of ≥ 50 % stenosis. In contrast, 16 patients demonstrated increased HbO2 levels post-LER, with no patients requiring TLR at 6-months.</div></div><div><h3>Conclusion</h3><div>This study demonstrates the potential of MSOT to detect changes in tissue perfusion following LER, highlighting its promise as a novel imaging modality for guiding treatment strategies.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"45 ","pages":"Article 100756"},"PeriodicalIF":6.8000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optoacoustic imaging in lower extremity revascularization: A novel technique to assess perioperative muscle perfusion\",\"authors\":\"Tim Wittig , Birte Winther , Charlene Reichl , Andrej Schmidt , Dierk Scheinert , Sabine Steiner\",\"doi\":\"10.1016/j.pacs.2025.100756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><div>This proof-of-concept study aimed to assess the feasibility of Multispectral Optoacoustic Tomography (MSOT) in evaluating changes in oxygenated hemoglobin (HbO2) levels in muscles of the lower limb before and after lower extremity revascularization (LER).</div></div><div><h3>Methods</h3><div>In 26 patients, HbO2 levels were assessed before and after LER, with follow-up assessing symptom control and patency for up to six months.</div></div><div><h3>Results</h3><div>A significant difference in HbO2 levels was observed between pre- and post-LER in the muscles of the lower limb. In 10 patients, HbO2 levels did not increase following LER, and at the 6-month follow-up, 2 of these patients required target lesion revascularization (TLR) due to restenosis of ≥ 50 % stenosis. In contrast, 16 patients demonstrated increased HbO2 levels post-LER, with no patients requiring TLR at 6-months.</div></div><div><h3>Conclusion</h3><div>This study demonstrates the potential of MSOT to detect changes in tissue perfusion following LER, highlighting its promise as a novel imaging modality for guiding treatment strategies.</div></div>\",\"PeriodicalId\":56025,\"journal\":{\"name\":\"Photoacoustics\",\"volume\":\"45 \",\"pages\":\"Article 100756\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photoacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213597925000795\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597925000795","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Optoacoustic imaging in lower extremity revascularization: A novel technique to assess perioperative muscle perfusion
Objectives
This proof-of-concept study aimed to assess the feasibility of Multispectral Optoacoustic Tomography (MSOT) in evaluating changes in oxygenated hemoglobin (HbO2) levels in muscles of the lower limb before and after lower extremity revascularization (LER).
Methods
In 26 patients, HbO2 levels were assessed before and after LER, with follow-up assessing symptom control and patency for up to six months.
Results
A significant difference in HbO2 levels was observed between pre- and post-LER in the muscles of the lower limb. In 10 patients, HbO2 levels did not increase following LER, and at the 6-month follow-up, 2 of these patients required target lesion revascularization (TLR) due to restenosis of ≥ 50 % stenosis. In contrast, 16 patients demonstrated increased HbO2 levels post-LER, with no patients requiring TLR at 6-months.
Conclusion
This study demonstrates the potential of MSOT to detect changes in tissue perfusion following LER, highlighting its promise as a novel imaging modality for guiding treatment strategies.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.