具有弱初始奇异性的二维回火分数阶非线性Schrödinger方程的一种非均匀时间步进紧凑ADI格式加速回火算法

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Himanshu Kumar Dwivedi, Rajeev
{"title":"具有弱初始奇异性的二维回火分数阶非线性Schrödinger方程的一种非均匀时间步进紧凑ADI格式加速回火算法","authors":"Himanshu Kumar Dwivedi,&nbsp;Rajeev","doi":"10.1016/j.camwa.2025.07.036","DOIUrl":null,"url":null,"abstract":"<div><div>This study numerically examines nonlinear fractional Schrödinger equations with the Caputo tempered fractional derivatives (TFD). We present a novel efficient algorithm for enhanced simulation of Caputo TFD. We develop a fast tempered <span><math><mrow><mmultiscripts><mrow><mi>FL</mi></mrow><mprescripts></mprescripts><none></none><mrow><mi>λ</mi></mrow></mmultiscripts></mrow><mn>1</mn></math></span> scheme with parameter <em>λ</em> to significantly reduce computational and storage requirements, crucial for large-scale problems. This algorithm relies on sum of exponents(SOE) technique. The spatial discretization is achieved through the use of the compact finite difference method. Introducing some small perturbation terms yields fully discrete alternating direction implicit (ADI) schemes. By implementing an adaptive time-stepping strategy, we effectively manage long-time simulations while alleviating the inherent initial singularity through the use of a graded mesh in the temporal domain. A crucial Grönwall-type inequality is derived to rigorously analyze the convergence and stability of the proposed <span><math><mrow><mmultiscripts><mrow><mi>FL</mi></mrow><mprescripts></mprescripts><none></none><mrow><mi>λ</mi></mrow></mmultiscripts></mrow><mn>1</mn></math></span>-ADI-CD scheme. Numerical findings are consistent with the anticipated theoretical outcomes, improving precision while substantially lowering computational demands and memory requirements in contrast to classical schemes. This efficiency is further evidenced by a substantial reduction in CPU time. The robustness and reliability of the proposed numerical method are thoroughly validated through extensive numerical experiments. This appears to be first accelerated <span><math><mrow><mmultiscripts><mrow><mi>FL</mi></mrow><mprescripts></mprescripts><none></none><mrow><mi>λ</mi></mrow></mmultiscripts></mrow><mn>1</mn></math></span>-ADI-CD time-stepping approach for nonlinear tempered time fractional Schrödinger equation(NL-TFSE).</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"196 ","pages":"Pages 312-337"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel accelerated tempered algorithm with nonuniform time-stepping compact ADI scheme for 2D tempered-fractional nonlinear Schrödinger equations with weak initial singularity\",\"authors\":\"Himanshu Kumar Dwivedi,&nbsp;Rajeev\",\"doi\":\"10.1016/j.camwa.2025.07.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study numerically examines nonlinear fractional Schrödinger equations with the Caputo tempered fractional derivatives (TFD). We present a novel efficient algorithm for enhanced simulation of Caputo TFD. We develop a fast tempered <span><math><mrow><mmultiscripts><mrow><mi>FL</mi></mrow><mprescripts></mprescripts><none></none><mrow><mi>λ</mi></mrow></mmultiscripts></mrow><mn>1</mn></math></span> scheme with parameter <em>λ</em> to significantly reduce computational and storage requirements, crucial for large-scale problems. This algorithm relies on sum of exponents(SOE) technique. The spatial discretization is achieved through the use of the compact finite difference method. Introducing some small perturbation terms yields fully discrete alternating direction implicit (ADI) schemes. By implementing an adaptive time-stepping strategy, we effectively manage long-time simulations while alleviating the inherent initial singularity through the use of a graded mesh in the temporal domain. A crucial Grönwall-type inequality is derived to rigorously analyze the convergence and stability of the proposed <span><math><mrow><mmultiscripts><mrow><mi>FL</mi></mrow><mprescripts></mprescripts><none></none><mrow><mi>λ</mi></mrow></mmultiscripts></mrow><mn>1</mn></math></span>-ADI-CD scheme. Numerical findings are consistent with the anticipated theoretical outcomes, improving precision while substantially lowering computational demands and memory requirements in contrast to classical schemes. This efficiency is further evidenced by a substantial reduction in CPU time. The robustness and reliability of the proposed numerical method are thoroughly validated through extensive numerical experiments. This appears to be first accelerated <span><math><mrow><mmultiscripts><mrow><mi>FL</mi></mrow><mprescripts></mprescripts><none></none><mrow><mi>λ</mi></mrow></mmultiscripts></mrow><mn>1</mn></math></span>-ADI-CD time-stepping approach for nonlinear tempered time fractional Schrödinger equation(NL-TFSE).</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"196 \",\"pages\":\"Pages 312-337\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125003256\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003256","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究数值检验非线性分数阶Schrödinger方程与卡普托回火分数阶导数(TFD)。我们提出了一种新的高效算法来增强卡普托TFD的仿真。我们开发了一个具有参数λ的快速调节FLλ1方案,以显着减少计算和存储需求,这对于大规模问题至关重要。该算法依赖于指数和(SOE)技术。利用紧致有限差分法实现了空间离散化。引入一些小扰动项,得到了完全离散的交替方向隐式格式。通过实现自适应时间步进策略,我们有效地管理长时间模拟,同时通过在时域使用渐变网格来缓解固有的初始奇异性。推导了一个至关重要的Grönwall-type不等式,以严格分析所提出的FLλ1-ADI-CD方案的收敛性和稳定性。数值结果与预期的理论结果一致,与经典方案相比,提高了精度,同时大大降低了计算需求和内存需求。CPU时间的大幅减少进一步证明了这种效率。通过大量的数值实验,充分验证了所提数值方法的鲁棒性和可靠性。这似乎是非线性回火时间分数阶Schrödinger方程(NL-TFSE)的第一个加速FLλ1-ADI-CD时间步进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel accelerated tempered algorithm with nonuniform time-stepping compact ADI scheme for 2D tempered-fractional nonlinear Schrödinger equations with weak initial singularity
This study numerically examines nonlinear fractional Schrödinger equations with the Caputo tempered fractional derivatives (TFD). We present a novel efficient algorithm for enhanced simulation of Caputo TFD. We develop a fast tempered FLλ1 scheme with parameter λ to significantly reduce computational and storage requirements, crucial for large-scale problems. This algorithm relies on sum of exponents(SOE) technique. The spatial discretization is achieved through the use of the compact finite difference method. Introducing some small perturbation terms yields fully discrete alternating direction implicit (ADI) schemes. By implementing an adaptive time-stepping strategy, we effectively manage long-time simulations while alleviating the inherent initial singularity through the use of a graded mesh in the temporal domain. A crucial Grönwall-type inequality is derived to rigorously analyze the convergence and stability of the proposed FLλ1-ADI-CD scheme. Numerical findings are consistent with the anticipated theoretical outcomes, improving precision while substantially lowering computational demands and memory requirements in contrast to classical schemes. This efficiency is further evidenced by a substantial reduction in CPU time. The robustness and reliability of the proposed numerical method are thoroughly validated through extensive numerical experiments. This appears to be first accelerated FLλ1-ADI-CD time-stepping approach for nonlinear tempered time fractional Schrödinger equation(NL-TFSE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信