硫酸盐还原菌(SRB)硫酸盐还原过程中Fe2+辅助促进电子转移加速铜腐蚀

IF 7.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Huixuan Qian , Xinwei Wang , Xinyu Zhao , Tianguan Wang , Ting Shi , Bo Zhang , Guozhe Meng
{"title":"硫酸盐还原菌(SRB)硫酸盐还原过程中Fe2+辅助促进电子转移加速铜腐蚀","authors":"Huixuan Qian ,&nbsp;Xinwei Wang ,&nbsp;Xinyu Zhao ,&nbsp;Tianguan Wang ,&nbsp;Ting Shi ,&nbsp;Bo Zhang ,&nbsp;Guozhe Meng","doi":"10.1016/j.corsci.2025.113229","DOIUrl":null,"url":null,"abstract":"<div><div>Sulfate-reducing bacteria (SRB) drive the anaerobic corrosion of copper through their unique sulfur metabolism electron transfer system. Within this system, cytochrome c (<em>Cyt. c</em>) acts as a key electron carrier, utilizing iron ions in its heme group to mediate sulfate reduction. Consequently, variations in environmental iron ion (Fe<sup>2+</sup>) concentration can directly impact SRB sulfate reduction activity and thus influence metal corrosion. This study employs electrochemical and transcriptomic analyses to elucidate the effect of environmental Fe<sup>2+</sup> concentration on copper anaerobic corrosion, specifically examining the electron transfer chain in SRB (Desulfovibrio vulgaris) metabolism. Results demonstrate that elevated Fe<sup>2+</sup> concentrations (191–765 μM) induce transcriptional activation of <em>Cyt. c</em>-related protein genes and significantly enhance expression of genes encoding the 4Fe-4S cluster domain. This upregulation promotes the production of hydrogen sulfide (H₂S), the metabolic end product of sulfate reduction, leading to accelerated copper corrosion (increasing from 0.26 ± 0.07 mg/cm<sup>2</sup> to 0.49 ± 0.15 mg/cm<sup>2</sup>). These findings provide a new perspective for understanding rapid copper corrosion in SRB and iron containing environments and offer a critical reference for evaluating the potential use of iron sacrificial anodes to protect copper and its alloys.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"256 ","pages":"Article 113229"},"PeriodicalIF":7.4000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating corrosion of copper via Fe2+-assisted promotion of the electron transfer in the sulfate reduction process of sulfate-reducing bacteria (SRB)\",\"authors\":\"Huixuan Qian ,&nbsp;Xinwei Wang ,&nbsp;Xinyu Zhao ,&nbsp;Tianguan Wang ,&nbsp;Ting Shi ,&nbsp;Bo Zhang ,&nbsp;Guozhe Meng\",\"doi\":\"10.1016/j.corsci.2025.113229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sulfate-reducing bacteria (SRB) drive the anaerobic corrosion of copper through their unique sulfur metabolism electron transfer system. Within this system, cytochrome c (<em>Cyt. c</em>) acts as a key electron carrier, utilizing iron ions in its heme group to mediate sulfate reduction. Consequently, variations in environmental iron ion (Fe<sup>2+</sup>) concentration can directly impact SRB sulfate reduction activity and thus influence metal corrosion. This study employs electrochemical and transcriptomic analyses to elucidate the effect of environmental Fe<sup>2+</sup> concentration on copper anaerobic corrosion, specifically examining the electron transfer chain in SRB (Desulfovibrio vulgaris) metabolism. Results demonstrate that elevated Fe<sup>2+</sup> concentrations (191–765 μM) induce transcriptional activation of <em>Cyt. c</em>-related protein genes and significantly enhance expression of genes encoding the 4Fe-4S cluster domain. This upregulation promotes the production of hydrogen sulfide (H₂S), the metabolic end product of sulfate reduction, leading to accelerated copper corrosion (increasing from 0.26 ± 0.07 mg/cm<sup>2</sup> to 0.49 ± 0.15 mg/cm<sup>2</sup>). These findings provide a new perspective for understanding rapid copper corrosion in SRB and iron containing environments and offer a critical reference for evaluating the potential use of iron sacrificial anodes to protect copper and its alloys.</div></div>\",\"PeriodicalId\":290,\"journal\":{\"name\":\"Corrosion Science\",\"volume\":\"256 \",\"pages\":\"Article 113229\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010938X25005566\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X25005566","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硫酸盐还原菌(SRB)通过其独特的硫代谢电子传递系统驱动铜的厌氧腐蚀。在这个系统中,细胞色素c (Cyt。C)作为关键的电子载体,利用其血红素基团中的铁离子介导硫酸盐还原。因此,环境中铁离子(Fe2+)浓度的变化可以直接影响SRB硫酸盐还原活性,从而影响金属腐蚀。本研究通过电化学和转录组学分析来阐明环境Fe2+浓度对铜厌氧腐蚀的影响,特别是研究了SRB (Desulfovibrio vulgaris)代谢中的电子传递链。结果表明,升高的Fe2+浓度(191-765 μM)可诱导Cyt的转录激活。c相关蛋白基因和编码4Fe-4S簇结构域基因的表达显著增强。这种上调促进了硫化氢(H₂S)的产生,硫化氢是硫酸盐还原的代谢终产物,导致铜腐蚀加速(从0.26 ± 0.07 mg/cm2增加到0.49 ± 0.15 mg/cm2)。这些发现为理解SRB和含铁环境中铜的快速腐蚀提供了新的视角,并为评估铁牺牲阳极保护铜及其合金的潜在用途提供了重要参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating corrosion of copper via Fe2+-assisted promotion of the electron transfer in the sulfate reduction process of sulfate-reducing bacteria (SRB)
Sulfate-reducing bacteria (SRB) drive the anaerobic corrosion of copper through their unique sulfur metabolism electron transfer system. Within this system, cytochrome c (Cyt. c) acts as a key electron carrier, utilizing iron ions in its heme group to mediate sulfate reduction. Consequently, variations in environmental iron ion (Fe2+) concentration can directly impact SRB sulfate reduction activity and thus influence metal corrosion. This study employs electrochemical and transcriptomic analyses to elucidate the effect of environmental Fe2+ concentration on copper anaerobic corrosion, specifically examining the electron transfer chain in SRB (Desulfovibrio vulgaris) metabolism. Results demonstrate that elevated Fe2+ concentrations (191–765 μM) induce transcriptional activation of Cyt. c-related protein genes and significantly enhance expression of genes encoding the 4Fe-4S cluster domain. This upregulation promotes the production of hydrogen sulfide (H₂S), the metabolic end product of sulfate reduction, leading to accelerated copper corrosion (increasing from 0.26 ± 0.07 mg/cm2 to 0.49 ± 0.15 mg/cm2). These findings provide a new perspective for understanding rapid copper corrosion in SRB and iron containing environments and offer a critical reference for evaluating the potential use of iron sacrificial anodes to protect copper and its alloys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Corrosion Science
Corrosion Science 工程技术-材料科学:综合
CiteScore
13.60
自引率
18.10%
发文量
763
审稿时长
46 days
期刊介绍: Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies. This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信