内部电场工程CuS@SrTiO3 s方案异质结增强光催化制氢

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jiahong Ye , Bin Liu , Xinglei Wang , Yi Zhang , Haitao Ren , Yuhan Li , Zhifen Yang , Jianmin Luo
{"title":"内部电场工程CuS@SrTiO3 s方案异质结增强光催化制氢","authors":"Jiahong Ye ,&nbsp;Bin Liu ,&nbsp;Xinglei Wang ,&nbsp;Yi Zhang ,&nbsp;Haitao Ren ,&nbsp;Yuhan Li ,&nbsp;Zhifen Yang ,&nbsp;Jianmin Luo","doi":"10.1016/j.apsusc.2025.164230","DOIUrl":null,"url":null,"abstract":"<div><div>The design of S-scheme heterojunctions with an internal electric field (IEF) provides an effective approach to facilitate the separation of photogenerated carriers. In this work, we strategically constructed a CuS@SrTiO<sub>3</sub> heterojunction through hydrothermal synthesis, anchoring non-noble plasmonic CuS nanoparticles onto SrTiO<sub>3</sub> surfaces. Density functional theory (DFT) calculations demonstrates that an IEF is established at the CuS@SrTiO<sub>3</sub> interface due to the work function difference, driving the photogenerated carriers to migrate rapidly along an S-scheme pathway. Experimental evidence confirms that the interfacial coupling synergizes with the localized surface plasmon resonance (LSPR) effect of CuS, simultaneously broadening light absorption and establishing directional carrier migration pathways. The resultant CuS@SrTiO<sub>3</sub> heterojunction demonstrates exceptional photocatalytic H<sub>2</sub> generation performance, achieving production rates 10.84 and 207.05 times higher than those of pristine SrTiO<sub>3</sub> and CuS, respectively. This study highlights the critical role of interface design in manipulating charge transfer routes, offering a universal strategy for developing high-performance S-scheme photocatalysts through tailored interfacial interactions.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"712 ","pages":"Article 164230"},"PeriodicalIF":6.9000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internal electric field-engineered CuS@SrTiO3 S-scheme heterojunction for enhanced photocatalytic H2 generation\",\"authors\":\"Jiahong Ye ,&nbsp;Bin Liu ,&nbsp;Xinglei Wang ,&nbsp;Yi Zhang ,&nbsp;Haitao Ren ,&nbsp;Yuhan Li ,&nbsp;Zhifen Yang ,&nbsp;Jianmin Luo\",\"doi\":\"10.1016/j.apsusc.2025.164230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The design of S-scheme heterojunctions with an internal electric field (IEF) provides an effective approach to facilitate the separation of photogenerated carriers. In this work, we strategically constructed a CuS@SrTiO<sub>3</sub> heterojunction through hydrothermal synthesis, anchoring non-noble plasmonic CuS nanoparticles onto SrTiO<sub>3</sub> surfaces. Density functional theory (DFT) calculations demonstrates that an IEF is established at the CuS@SrTiO<sub>3</sub> interface due to the work function difference, driving the photogenerated carriers to migrate rapidly along an S-scheme pathway. Experimental evidence confirms that the interfacial coupling synergizes with the localized surface plasmon resonance (LSPR) effect of CuS, simultaneously broadening light absorption and establishing directional carrier migration pathways. The resultant CuS@SrTiO<sub>3</sub> heterojunction demonstrates exceptional photocatalytic H<sub>2</sub> generation performance, achieving production rates 10.84 and 207.05 times higher than those of pristine SrTiO<sub>3</sub> and CuS, respectively. This study highlights the critical role of interface design in manipulating charge transfer routes, offering a universal strategy for developing high-performance S-scheme photocatalysts through tailored interfacial interactions.</div></div>\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"712 \",\"pages\":\"Article 164230\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169433225019452\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225019452","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

具有内电场的s型异质结的设计为光生载流子的分离提供了一种有效的方法。在这项工作中,我们通过水热合成战略性地构建了CuS@SrTiO3异质结,将非贵金属等离子体cu纳米颗粒锚定在SrTiO3表面上。密度泛函理论(DFT)计算表明,由于功函数的差异,在CuS@SrTiO3界面处建立了IEF,驱动光生载流子沿S-scheme路径快速迁移。实验证据证实,界面耦合与cu的局部表面等离子体共振(LSPR)效应协同作用,同时扩大了光吸收并建立了定向载流子迁移途径。合成的CuS@SrTiO3异质结具有优异的光催化制氢性能,产氢率分别是原始SrTiO3和cu的10.84倍和207.05倍。本研究强调了界面设计在控制电荷转移路线中的关键作用,为通过定制界面相互作用开发高性能S-scheme光催化剂提供了一种通用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Internal electric field-engineered CuS@SrTiO3 S-scheme heterojunction for enhanced photocatalytic H2 generation

Internal electric field-engineered CuS@SrTiO3 S-scheme heterojunction for enhanced photocatalytic H2 generation
The design of S-scheme heterojunctions with an internal electric field (IEF) provides an effective approach to facilitate the separation of photogenerated carriers. In this work, we strategically constructed a CuS@SrTiO3 heterojunction through hydrothermal synthesis, anchoring non-noble plasmonic CuS nanoparticles onto SrTiO3 surfaces. Density functional theory (DFT) calculations demonstrates that an IEF is established at the CuS@SrTiO3 interface due to the work function difference, driving the photogenerated carriers to migrate rapidly along an S-scheme pathway. Experimental evidence confirms that the interfacial coupling synergizes with the localized surface plasmon resonance (LSPR) effect of CuS, simultaneously broadening light absorption and establishing directional carrier migration pathways. The resultant CuS@SrTiO3 heterojunction demonstrates exceptional photocatalytic H2 generation performance, achieving production rates 10.84 and 207.05 times higher than those of pristine SrTiO3 and CuS, respectively. This study highlights the critical role of interface design in manipulating charge transfer routes, offering a universal strategy for developing high-performance S-scheme photocatalysts through tailored interfacial interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信