m-Haar图形表示的存在性

IF 1.2 2区 数学 Q2 MATHEMATICS
Jia-Li Du , Yan-Quan Feng , Binzhou Xia , Da-Wei Yang
{"title":"m-Haar图形表示的存在性","authors":"Jia-Li Du ,&nbsp;Yan-Quan Feng ,&nbsp;Binzhou Xia ,&nbsp;Da-Wei Yang","doi":"10.1016/j.jcta.2025.106096","DOIUrl":null,"url":null,"abstract":"<div><div>Extending the well-studied concept of graphical regular representations to bipartite graphs, a Haar graphical representation (HGR) of a group <em>G</em> is a bipartite graph whose automorphism group is isomorphic to <em>G</em> and acts semiregularly with the orbits giving the bipartition. The question of which groups admit an HGR was inspired by a closely related question of Estélyi and Pisanski in 2016, as well as Babai's work in 1980 on poset representations, and has been recently solved by Morris and Spiga. In this paper, we introduce the <em>m</em>-Haar graphical representation (<em>m</em>-HGR) as a natural generalization of HGR to <em>m</em>-partite graphs for <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>, and explore the existence of <em>m</em>-HGRs for any fixed group. This inquiry represents a more robust version of the existence problem of G<em>m</em>SRs as addressed by Du, Feng and Spiga in 2020. Our main result is a complete classification of finite groups <em>G</em> without <em>m</em>-HGRs.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"218 ","pages":"Article 106096"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The existence of m-Haar graphical representations\",\"authors\":\"Jia-Li Du ,&nbsp;Yan-Quan Feng ,&nbsp;Binzhou Xia ,&nbsp;Da-Wei Yang\",\"doi\":\"10.1016/j.jcta.2025.106096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Extending the well-studied concept of graphical regular representations to bipartite graphs, a Haar graphical representation (HGR) of a group <em>G</em> is a bipartite graph whose automorphism group is isomorphic to <em>G</em> and acts semiregularly with the orbits giving the bipartition. The question of which groups admit an HGR was inspired by a closely related question of Estélyi and Pisanski in 2016, as well as Babai's work in 1980 on poset representations, and has been recently solved by Morris and Spiga. In this paper, we introduce the <em>m</em>-Haar graphical representation (<em>m</em>-HGR) as a natural generalization of HGR to <em>m</em>-partite graphs for <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>, and explore the existence of <em>m</em>-HGRs for any fixed group. This inquiry represents a more robust version of the existence problem of G<em>m</em>SRs as addressed by Du, Feng and Spiga in 2020. Our main result is a complete classification of finite groups <em>G</em> without <em>m</em>-HGRs.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"218 \",\"pages\":\"Article 106096\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316525000913\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000913","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

将已被广泛研究的图形正则表示的概念推广到二部图,群G的Haar图形表示(HGR)是自同构群与G同构并与给出二分的轨道半正则作用的二部图。哪些群体承认HGR的问题受到了est和Pisanski在2016年提出的一个密切相关的问题的启发,以及Babai在1980年对posset表示的研究,莫里斯和斯皮加最近解决了这个问题。本文引入m- haar图表示(m-HGR)作为m≥2时m- haar图表示对m-部图的自然推广,并探讨了m-HGR对任意固定群的存在性。这项研究代表了杜、冯和斯皮加在2020年提出的gmsr存在问题的一个更强大的版本。我们的主要结果是没有m- hgr的有限群G的完全分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The existence of m-Haar graphical representations
Extending the well-studied concept of graphical regular representations to bipartite graphs, a Haar graphical representation (HGR) of a group G is a bipartite graph whose automorphism group is isomorphic to G and acts semiregularly with the orbits giving the bipartition. The question of which groups admit an HGR was inspired by a closely related question of Estélyi and Pisanski in 2016, as well as Babai's work in 1980 on poset representations, and has been recently solved by Morris and Spiga. In this paper, we introduce the m-Haar graphical representation (m-HGR) as a natural generalization of HGR to m-partite graphs for m2, and explore the existence of m-HGRs for any fixed group. This inquiry represents a more robust version of the existence problem of GmSRs as addressed by Du, Feng and Spiga in 2020. Our main result is a complete classification of finite groups G without m-HGRs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信