在含有石墨烯和Weyl半金属的一维双腔光子晶体中Goos-Hänchen位移

IF 3 Q2 PHYSICS, CONDENSED MATTER
Akram Ashenaei , Kazem Jamshidi-Ghaleh , Reza Abdi-Ghaleh
{"title":"在含有石墨烯和Weyl半金属的一维双腔光子晶体中Goos-Hänchen位移","authors":"Akram Ashenaei ,&nbsp;Kazem Jamshidi-Ghaleh ,&nbsp;Reza Abdi-Ghaleh","doi":"10.1016/j.micrna.2025.208279","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the Goos–Hänchen (GH) shift in a one-dimensional photonic crystal (1DPC) structure with a dual-cavity configuration. It consists of two photonic micro-cavities, with arrangement of <span><math><mrow><msup><mrow><mo>(</mo><mtext>AB</mtext><mo>)</mo></mrow><mi>N</mi></msup><mi>G</mi><mspace></mspace><msup><mrow><mo>(</mo><mtext>BA</mtext><mo>)</mo></mrow><mi>M</mi></msup><mi>B</mi><mspace></mspace><mi>C</mi><mspace></mspace><msup><mrow><mo>(</mo><mtext>BA</mtext><mo>)</mo></mrow><mi>N</mi></msup></mrow></math></span>, one is designed with a Weyl semimetal (C) layer and the other one with a graphene (G), where A and B are dielectric layers. The reflection spectrum of an incident wave with TM polarization, its relative phase and the corresponding GH shift are calculated using the 2 × 2 transfer matrix method. The results indicate that the proposed structure exhibits two defect modes at a frequency of 235 THz (λ <span><math><mrow><mo>=</mo><mn>8.01</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>), occurring at angles of 18.7 and 53.9°, which lead to GH shifts of +37.8 λ and −4.9 λ, respectively. The effect of the G and C relative position, the chemical potential of graphene, the Fermi energy and the distance between Weyl nodes have examined for controlling the GH shift. This high tunability makes the proposed structure suitable for designing controllable optical devices and highly sensitive sensors based on the GH shift.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"207 ","pages":"Article 208279"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Goos–Hänchen shift in a one-dimensional dual-cavity photonic crystal containing graphene and Weyl semimetal\",\"authors\":\"Akram Ashenaei ,&nbsp;Kazem Jamshidi-Ghaleh ,&nbsp;Reza Abdi-Ghaleh\",\"doi\":\"10.1016/j.micrna.2025.208279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the Goos–Hänchen (GH) shift in a one-dimensional photonic crystal (1DPC) structure with a dual-cavity configuration. It consists of two photonic micro-cavities, with arrangement of <span><math><mrow><msup><mrow><mo>(</mo><mtext>AB</mtext><mo>)</mo></mrow><mi>N</mi></msup><mi>G</mi><mspace></mspace><msup><mrow><mo>(</mo><mtext>BA</mtext><mo>)</mo></mrow><mi>M</mi></msup><mi>B</mi><mspace></mspace><mi>C</mi><mspace></mspace><msup><mrow><mo>(</mo><mtext>BA</mtext><mo>)</mo></mrow><mi>N</mi></msup></mrow></math></span>, one is designed with a Weyl semimetal (C) layer and the other one with a graphene (G), where A and B are dielectric layers. The reflection spectrum of an incident wave with TM polarization, its relative phase and the corresponding GH shift are calculated using the 2 × 2 transfer matrix method. The results indicate that the proposed structure exhibits two defect modes at a frequency of 235 THz (λ <span><math><mrow><mo>=</mo><mn>8.01</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>), occurring at angles of 18.7 and 53.9°, which lead to GH shifts of +37.8 λ and −4.9 λ, respectively. The effect of the G and C relative position, the chemical potential of graphene, the Fermi energy and the distance between Weyl nodes have examined for controlling the GH shift. This high tunability makes the proposed structure suitable for designing controllable optical devices and highly sensitive sensors based on the GH shift.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"207 \",\"pages\":\"Article 208279\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325002080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325002080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有双腔结构的一维光子晶体(1DPC)结构中Goos-Hänchen (GH)的位移。它由(AB)NG(BA)MBC(BA)N排列的两个光子微腔组成,其中一个设计有Weyl半金属(C)层,另一个设计有石墨烯(G)层,其中a和B是介电层。采用2 × 2传输矩阵法计算了TM偏振入射波的反射谱、相对相位和相应的GH位移。结果表明,该结构在235 THz (λ =8.01μm)频率处表现出两种缺陷模式,分别发生在18.7°和53.9°角处,导致GH位移分别为+37.8 λ和−4.9 λ。研究了G和C的相对位置、石墨烯的化学势、费米能和Weyl节点之间的距离对GH位移的控制作用。这种高可调性使得该结构适合设计基于GH位移的可控光学器件和高灵敏度传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Goos–Hänchen shift in a one-dimensional dual-cavity photonic crystal containing graphene and Weyl semimetal
This paper investigates the Goos–Hänchen (GH) shift in a one-dimensional photonic crystal (1DPC) structure with a dual-cavity configuration. It consists of two photonic micro-cavities, with arrangement of (AB)NG(BA)MBC(BA)N, one is designed with a Weyl semimetal (C) layer and the other one with a graphene (G), where A and B are dielectric layers. The reflection spectrum of an incident wave with TM polarization, its relative phase and the corresponding GH shift are calculated using the 2 × 2 transfer matrix method. The results indicate that the proposed structure exhibits two defect modes at a frequency of 235 THz (λ =8.01μm), occurring at angles of 18.7 and 53.9°, which lead to GH shifts of +37.8 λ and −4.9 λ, respectively. The effect of the G and C relative position, the chemical potential of graphene, the Fermi energy and the distance between Weyl nodes have examined for controlling the GH shift. This high tunability makes the proposed structure suitable for designing controllable optical devices and highly sensitive sensors based on the GH shift.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信