石墨烯/富勒烯纳米颗粒耦合表面形貌特征在固液复合润滑中的原子观察

IF 8.2 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Feng Qiu, Hui Song, Zhiquan Yang, Xianguo Hu
{"title":"石墨烯/富勒烯纳米颗粒耦合表面形貌特征在固液复合润滑中的原子观察","authors":"Feng Qiu, Hui Song, Zhiquan Yang, Xianguo Hu","doi":"10.26599/frict.2025.9441163","DOIUrl":null,"url":null,"abstract":"<p>Graphene and fullerene nanoparticles exhibit remarkable tribological performance in solid-liquid composite lubrication systems. However, the atomic-scale understanding of how surface topography influences their tribological behavior and performance is still limited. Herein, the influence mechanisms of surface topography features (achieved by regulating asperity amplitude and frequency parameters) on system lubrication performance and nanoparticle friction behavior were systematically investigated through friction experiments and molecular simulations. The results indicate that, at the micro-nanoscale, the amplitude parameter predominantly governs the surface roughness features and frictional resistance. This is because an increased amplitude strengthens the boundary lubrication effect, exacerbates stress concentration and structural deformation of graphene, and makes fullerene more likely to fill grooves and difficult to bear normal loads, thereby exacerbating friction and wear (friction coefficient increased by 59%). In contrast, the frequency parameter primarily determines the surface kurtosis features and normal force. At low frequency, low kurtosis features intensify the normal squeezing effect of asperities, inducing the hydrodynamic pressure effect of the base oil, thus enhancing lubrication performance (friction coefficient decreased by 22%). Compared with frequency, the pronounced influence of amplitude on lubrication state and interface contact behavior dominates the tribological properties of the system and the lubrication mechanism of the nanoparticles. Lower surface roughness and kurtosis features are critical for achieving efficient lubrication. This study offers valuable insights into the design of surface topography and the optimization of lubrication performance.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"13 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomistic insights into graphene/fullerene nanoparticles coupled surface topography features in solid–liquid composite lubrication\",\"authors\":\"Feng Qiu, Hui Song, Zhiquan Yang, Xianguo Hu\",\"doi\":\"10.26599/frict.2025.9441163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Graphene and fullerene nanoparticles exhibit remarkable tribological performance in solid-liquid composite lubrication systems. However, the atomic-scale understanding of how surface topography influences their tribological behavior and performance is still limited. Herein, the influence mechanisms of surface topography features (achieved by regulating asperity amplitude and frequency parameters) on system lubrication performance and nanoparticle friction behavior were systematically investigated through friction experiments and molecular simulations. The results indicate that, at the micro-nanoscale, the amplitude parameter predominantly governs the surface roughness features and frictional resistance. This is because an increased amplitude strengthens the boundary lubrication effect, exacerbates stress concentration and structural deformation of graphene, and makes fullerene more likely to fill grooves and difficult to bear normal loads, thereby exacerbating friction and wear (friction coefficient increased by 59%). In contrast, the frequency parameter primarily determines the surface kurtosis features and normal force. At low frequency, low kurtosis features intensify the normal squeezing effect of asperities, inducing the hydrodynamic pressure effect of the base oil, thus enhancing lubrication performance (friction coefficient decreased by 22%). Compared with frequency, the pronounced influence of amplitude on lubrication state and interface contact behavior dominates the tribological properties of the system and the lubrication mechanism of the nanoparticles. Lower surface roughness and kurtosis features are critical for achieving efficient lubrication. This study offers valuable insights into the design of surface topography and the optimization of lubrication performance.</p>\",\"PeriodicalId\":12442,\"journal\":{\"name\":\"Friction\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Friction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.26599/frict.2025.9441163\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441163","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

石墨烯和富勒烯纳米颗粒在固液复合润滑系统中表现出优异的摩擦学性能。然而,对表面形貌如何影响其摩擦学行为和性能的原子尺度理解仍然有限。本文通过摩擦实验和分子模拟,系统研究了表面形貌特征(通过调节粗糙度振幅和频率参数实现)对系统润滑性能和纳米颗粒摩擦行为的影响机制。结果表明,在微纳尺度上,振幅参数主要控制表面粗糙度特征和摩擦阻力。这是因为振幅的增加加强了边界润滑作用,加剧了石墨烯的应力集中和结构变形,使富勒烯更容易填充凹槽,难以承受正常载荷,从而加剧了摩擦磨损(摩擦系数增加了59%)。相比之下,频率参数主要决定表面峰度特征和法向力。在低频时,低峰度特征强化了凸起的正常挤压作用,诱导基础油的动水压力效应,从而提高了润滑性能(摩擦系数降低22%)。与频率相比,振幅对润滑状态和界面接触行为的显著影响主导了体系的摩擦学性能和纳米颗粒的润滑机理。较低的表面粗糙度和峰度特征是实现有效润滑的关键。该研究为表面形貌的设计和润滑性能的优化提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Atomistic insights into graphene/fullerene nanoparticles coupled surface topography features in solid–liquid composite lubrication

Atomistic insights into graphene/fullerene nanoparticles coupled surface topography features in solid–liquid composite lubrication

Graphene and fullerene nanoparticles exhibit remarkable tribological performance in solid-liquid composite lubrication systems. However, the atomic-scale understanding of how surface topography influences their tribological behavior and performance is still limited. Herein, the influence mechanisms of surface topography features (achieved by regulating asperity amplitude and frequency parameters) on system lubrication performance and nanoparticle friction behavior were systematically investigated through friction experiments and molecular simulations. The results indicate that, at the micro-nanoscale, the amplitude parameter predominantly governs the surface roughness features and frictional resistance. This is because an increased amplitude strengthens the boundary lubrication effect, exacerbates stress concentration and structural deformation of graphene, and makes fullerene more likely to fill grooves and difficult to bear normal loads, thereby exacerbating friction and wear (friction coefficient increased by 59%). In contrast, the frequency parameter primarily determines the surface kurtosis features and normal force. At low frequency, low kurtosis features intensify the normal squeezing effect of asperities, inducing the hydrodynamic pressure effect of the base oil, thus enhancing lubrication performance (friction coefficient decreased by 22%). Compared with frequency, the pronounced influence of amplitude on lubrication state and interface contact behavior dominates the tribological properties of the system and the lubrication mechanism of the nanoparticles. Lower surface roughness and kurtosis features are critical for achieving efficient lubrication. This study offers valuable insights into the design of surface topography and the optimization of lubrication performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信