自适应学习物理辅助光场显微镜可以实现长达一天和毫秒级的3D亚细胞动力学超分辨率成像

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Lanxin Zhu, Jiahao Sun, Chengqiang Yi, Meng Zhang, Yihang Huang, Sicen Wu, Mian He, Liting Chen, Yicheng Zhang, Chunhong Zheng, Hao Chen, Jiang Tang, Yu-Hui Zhang, Dongyu Li, Peng Fei
{"title":"自适应学习物理辅助光场显微镜可以实现长达一天和毫秒级的3D亚细胞动力学超分辨率成像","authors":"Lanxin Zhu, Jiahao Sun, Chengqiang Yi, Meng Zhang, Yihang Huang, Sicen Wu, Mian He, Liting Chen, Yicheng Zhang, Chunhong Zheng, Hao Chen, Jiang Tang, Yu-Hui Zhang, Dongyu Li, Peng Fei","doi":"10.1038/s41467-025-62471-w","DOIUrl":null,"url":null,"abstract":"<p>Long-term and high-spatiotemporal-resolution 3D imaging of living cells remains an unmet challenge for super-resolution microscopy, owing to the noticeable phototoxicity and limited scanning speed. While emerging light-field microscopy can mitigate this issue through three-dimensionally capturing biological dynamics with merely single snapshot, it suffers from suboptimal resolution insufficient for resolving subcellular structures. Here we propose an Adaptive Learning PHysics-Assisted Light-Field Microscopy (Alpha-LFM) with a physics-assisted deep learning framework and adaptive-tuning strategies capable of light-field reconstruction of diverse subcellular dynamics. Alpha-LFM delivers sub-diffraction-limit spatial resolution (up to ~120 nm) while maintaining high temporal resolution and low phototoxicity. It enables rapid and mild 3D super-resolution imaging of diverse intracellular dynamics at hundreds of volumes per second with exceptional details. Using Alpha-LFM approach, we finely resolve the lysosome-mitochondrial interactions, capture rapid motion of peroxisome and the endoplasmic reticulum at 100 volumes per second, and reveal the variations in mitochondrial fission activity throughout two complete cell cycles of 60 h.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"37 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive-learning physics-assisted light-field microscopy enables day-long and millisecond-scale super-resolution imaging of 3D subcellular dynamics\",\"authors\":\"Lanxin Zhu, Jiahao Sun, Chengqiang Yi, Meng Zhang, Yihang Huang, Sicen Wu, Mian He, Liting Chen, Yicheng Zhang, Chunhong Zheng, Hao Chen, Jiang Tang, Yu-Hui Zhang, Dongyu Li, Peng Fei\",\"doi\":\"10.1038/s41467-025-62471-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Long-term and high-spatiotemporal-resolution 3D imaging of living cells remains an unmet challenge for super-resolution microscopy, owing to the noticeable phototoxicity and limited scanning speed. While emerging light-field microscopy can mitigate this issue through three-dimensionally capturing biological dynamics with merely single snapshot, it suffers from suboptimal resolution insufficient for resolving subcellular structures. Here we propose an Adaptive Learning PHysics-Assisted Light-Field Microscopy (Alpha-LFM) with a physics-assisted deep learning framework and adaptive-tuning strategies capable of light-field reconstruction of diverse subcellular dynamics. Alpha-LFM delivers sub-diffraction-limit spatial resolution (up to ~120 nm) while maintaining high temporal resolution and low phototoxicity. It enables rapid and mild 3D super-resolution imaging of diverse intracellular dynamics at hundreds of volumes per second with exceptional details. Using Alpha-LFM approach, we finely resolve the lysosome-mitochondrial interactions, capture rapid motion of peroxisome and the endoplasmic reticulum at 100 volumes per second, and reveal the variations in mitochondrial fission activity throughout two complete cell cycles of 60 h.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62471-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62471-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于明显的光毒性和有限的扫描速度,对活细胞进行长期和高时空分辨率的3D成像仍然是超分辨率显微镜未遇到的挑战。虽然新兴的光场显微镜可以通过仅用单个快照三维捕获生物动力学来缓解这一问题,但它的分辨率不够理想,无法解决亚细胞结构。在这里,我们提出了一种自适应学习物理辅助光场显微镜(Alpha-LFM),它具有物理辅助深度学习框架和自适应调谐策略,能够重建各种亚细胞动力学的光场。α - lfm提供亚衍射极限空间分辨率(高达~ 120nm),同时保持高时间分辨率和低光毒性。它能够以每秒数百个体积的速度对不同的细胞内动力学进行快速和温和的3D超分辨率成像,并具有出色的细节。利用α - lfm方法,我们精细地解析了溶酶体与线粒体的相互作用,捕捉到了每秒100体积的过氧化物酶体和内质网的快速运动,并揭示了在60小时的两个完整细胞周期中线粒体裂变活动的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Adaptive-learning physics-assisted light-field microscopy enables day-long and millisecond-scale super-resolution imaging of 3D subcellular dynamics

Adaptive-learning physics-assisted light-field microscopy enables day-long and millisecond-scale super-resolution imaging of 3D subcellular dynamics

Long-term and high-spatiotemporal-resolution 3D imaging of living cells remains an unmet challenge for super-resolution microscopy, owing to the noticeable phototoxicity and limited scanning speed. While emerging light-field microscopy can mitigate this issue through three-dimensionally capturing biological dynamics with merely single snapshot, it suffers from suboptimal resolution insufficient for resolving subcellular structures. Here we propose an Adaptive Learning PHysics-Assisted Light-Field Microscopy (Alpha-LFM) with a physics-assisted deep learning framework and adaptive-tuning strategies capable of light-field reconstruction of diverse subcellular dynamics. Alpha-LFM delivers sub-diffraction-limit spatial resolution (up to ~120 nm) while maintaining high temporal resolution and low phototoxicity. It enables rapid and mild 3D super-resolution imaging of diverse intracellular dynamics at hundreds of volumes per second with exceptional details. Using Alpha-LFM approach, we finely resolve the lysosome-mitochondrial interactions, capture rapid motion of peroxisome and the endoplasmic reticulum at 100 volumes per second, and reveal the variations in mitochondrial fission activity throughout two complete cell cycles of 60 h.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信