通过序列模板错误DNA聚合酶末端标记精确定位单链DNA断裂

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Leonie Wenson, Johan Heldin, Marcel Martin, Yücel Erbilgin, Barış Salman, Anders Sundqvist, Wesley Schaal, Friederike A. Sandbaumhüter, Erik T. Jansson, Xingqi Chen, Anton Davidsson, Bo Stenerlöw, Jaime A. Espinoza, Mikael Lindström, Johan Lennartsson, Ola Spjuth, Ola Söderberg
{"title":"通过序列模板错误DNA聚合酶末端标记精确定位单链DNA断裂","authors":"Leonie Wenson, Johan Heldin, Marcel Martin, Yücel Erbilgin, Barış Salman, Anders Sundqvist, Wesley Schaal, Friederike A. Sandbaumhüter, Erik T. Jansson, Xingqi Chen, Anton Davidsson, Bo Stenerlöw, Jaime A. Espinoza, Mikael Lindström, Johan Lennartsson, Ola Spjuth, Ola Söderberg","doi":"10.1038/s41467-025-62512-4","DOIUrl":null,"url":null,"abstract":"<p>The ability to analyze whether DNA contains lesions is essential in identifying mutagenic substances. Currently, the detection of single-stranded DNA breaks (SSBs) lacks precision. To address this limitation, we develop a method for sequence-templated erroneous end-labelling sequencing (STEEL-seq), which enables the mapping of SSBs. The method requires a highly error-prone DNA polymerase, so we engineer a chimeric DNA polymerase, Sloppymerase, capable of replicating DNA in the absence of one nucleotide. Following the omission of a specific nucleotide (e.g., dATP) from the reaction mixture, Sloppymerase introduces mismatches directly downstream of SSBs at positions where deoxyadenosine should occur. This mismatch pattern, coupled with the retention of sequence information flanking these sites, ensures that the identified hits are bona fide SSBs. STEEL-seq is compatible with a variety of sequencing technologies, as demonstrated using Sanger, Illumina, PacBio, and Nanopore systems. Using STEEL-seq, we determine the SSB/base pair frequency in the human genome to range between 0.7 and 3.8 × 10<sup>−6</sup> with an enrichment in active promoter regions.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"19 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise mapping of single-stranded DNA breaks by sequence-templated erroneous DNA polymerase end-labelling\",\"authors\":\"Leonie Wenson, Johan Heldin, Marcel Martin, Yücel Erbilgin, Barış Salman, Anders Sundqvist, Wesley Schaal, Friederike A. Sandbaumhüter, Erik T. Jansson, Xingqi Chen, Anton Davidsson, Bo Stenerlöw, Jaime A. Espinoza, Mikael Lindström, Johan Lennartsson, Ola Spjuth, Ola Söderberg\",\"doi\":\"10.1038/s41467-025-62512-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The ability to analyze whether DNA contains lesions is essential in identifying mutagenic substances. Currently, the detection of single-stranded DNA breaks (SSBs) lacks precision. To address this limitation, we develop a method for sequence-templated erroneous end-labelling sequencing (STEEL-seq), which enables the mapping of SSBs. The method requires a highly error-prone DNA polymerase, so we engineer a chimeric DNA polymerase, Sloppymerase, capable of replicating DNA in the absence of one nucleotide. Following the omission of a specific nucleotide (e.g., dATP) from the reaction mixture, Sloppymerase introduces mismatches directly downstream of SSBs at positions where deoxyadenosine should occur. This mismatch pattern, coupled with the retention of sequence information flanking these sites, ensures that the identified hits are bona fide SSBs. STEEL-seq is compatible with a variety of sequencing technologies, as demonstrated using Sanger, Illumina, PacBio, and Nanopore systems. Using STEEL-seq, we determine the SSB/base pair frequency in the human genome to range between 0.7 and 3.8 × 10<sup>−6</sup> with an enrichment in active promoter regions.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62512-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62512-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

分析DNA是否含有病变的能力对于识别致突变物质至关重要。目前,单链DNA断裂(SSBs)的检测缺乏准确性。为了解决这一限制,我们开发了一种序列模板错误末端标记测序(STEEL-seq)方法,使ssb的映射成为可能。该方法需要高度出错的DNA聚合酶,因此我们设计了一种嵌合DNA聚合酶,Sloppymerase,能够在缺乏一个核苷酸的情况下复制DNA。在反应混合物中遗漏特定核苷酸(如dATP)后,Sloppymerase在SSBs下游应该发生脱氧腺苷的位置直接引入错配。这种不匹配模式,加上这些位点两侧序列信息的保留,确保了识别的命中是真正的ssb。STEEL-seq与多种测序技术兼容,如使用Sanger, Illumina, PacBio和Nanopore系统所证明的那样。使用STEEL-seq,我们确定人类基因组中SSB/碱基对频率范围在0.7和3.8 × 10−6之间,活跃启动子区域富集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Precise mapping of single-stranded DNA breaks by sequence-templated erroneous DNA polymerase end-labelling

Precise mapping of single-stranded DNA breaks by sequence-templated erroneous DNA polymerase end-labelling

The ability to analyze whether DNA contains lesions is essential in identifying mutagenic substances. Currently, the detection of single-stranded DNA breaks (SSBs) lacks precision. To address this limitation, we develop a method for sequence-templated erroneous end-labelling sequencing (STEEL-seq), which enables the mapping of SSBs. The method requires a highly error-prone DNA polymerase, so we engineer a chimeric DNA polymerase, Sloppymerase, capable of replicating DNA in the absence of one nucleotide. Following the omission of a specific nucleotide (e.g., dATP) from the reaction mixture, Sloppymerase introduces mismatches directly downstream of SSBs at positions where deoxyadenosine should occur. This mismatch pattern, coupled with the retention of sequence information flanking these sites, ensures that the identified hits are bona fide SSBs. STEEL-seq is compatible with a variety of sequencing technologies, as demonstrated using Sanger, Illumina, PacBio, and Nanopore systems. Using STEEL-seq, we determine the SSB/base pair frequency in the human genome to range between 0.7 and 3.8 × 10−6 with an enrichment in active promoter regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信