{"title":"迭代重组酶技术在千碱基到百万碱基尺度上高效和精确的基因组工程","authors":"Chao Sun, Hongchao Li, Yijing Liu, Yunjia Li, Rui Gao, Xiaoli Shi, Hongyuan Fei, Jinxing Liu, Ronghong Liang, Caixia Gao","doi":"10.1016/j.cell.2025.07.011","DOIUrl":null,"url":null,"abstract":"Genome editing technologies face challenges in achieving precise, large-scale DNA manipulations in higher organisms, including inefficiency, limited editing scales and types, and the retention of undesired sequences such as recombination sites (“scars”). Here, we present programmable chromosome engineering (PCE) and RePCE, two programmable chromosome editing systems enabling scarless kilobase-to-megabase DNA manipulations in plants and human cells. Through high-throughput engineering, we obtained Lox sites with a 10-fold reduced reversibility and applied an AI-assisted recombinase engineering method (AiCE<sub><em>rec</em></sub>) to generate Cre variants with 3.5 times the recombination efficiency of the wild type. Incorporation of a Re-pegRNA-mediated scar-free strategy further enhanced editing precision, allowing scarless insertions, deletions, replacements, inversions, and translocations at the chromosomal level. Key applications include a 315-kb inversion in rice conferring herbicide resistance, scarless chromosome fusions, and a 12-Mb inversion at human disease-related sites. These advances significantly broaden the scope of genome editing applications in molecular breeding, therapeutic development, and synthetic biology.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"52 1","pages":""},"PeriodicalIF":42.5000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative recombinase technologies for efficient and precise genome engineering across kilobase to megabase scales\",\"authors\":\"Chao Sun, Hongchao Li, Yijing Liu, Yunjia Li, Rui Gao, Xiaoli Shi, Hongyuan Fei, Jinxing Liu, Ronghong Liang, Caixia Gao\",\"doi\":\"10.1016/j.cell.2025.07.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genome editing technologies face challenges in achieving precise, large-scale DNA manipulations in higher organisms, including inefficiency, limited editing scales and types, and the retention of undesired sequences such as recombination sites (“scars”). Here, we present programmable chromosome engineering (PCE) and RePCE, two programmable chromosome editing systems enabling scarless kilobase-to-megabase DNA manipulations in plants and human cells. Through high-throughput engineering, we obtained Lox sites with a 10-fold reduced reversibility and applied an AI-assisted recombinase engineering method (AiCE<sub><em>rec</em></sub>) to generate Cre variants with 3.5 times the recombination efficiency of the wild type. Incorporation of a Re-pegRNA-mediated scar-free strategy further enhanced editing precision, allowing scarless insertions, deletions, replacements, inversions, and translocations at the chromosomal level. Key applications include a 315-kb inversion in rice conferring herbicide resistance, scarless chromosome fusions, and a 12-Mb inversion at human disease-related sites. These advances significantly broaden the scope of genome editing applications in molecular breeding, therapeutic development, and synthetic biology.\",\"PeriodicalId\":9656,\"journal\":{\"name\":\"Cell\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":42.5000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cell.2025.07.011\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.07.011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Iterative recombinase technologies for efficient and precise genome engineering across kilobase to megabase scales
Genome editing technologies face challenges in achieving precise, large-scale DNA manipulations in higher organisms, including inefficiency, limited editing scales and types, and the retention of undesired sequences such as recombination sites (“scars”). Here, we present programmable chromosome engineering (PCE) and RePCE, two programmable chromosome editing systems enabling scarless kilobase-to-megabase DNA manipulations in plants and human cells. Through high-throughput engineering, we obtained Lox sites with a 10-fold reduced reversibility and applied an AI-assisted recombinase engineering method (AiCErec) to generate Cre variants with 3.5 times the recombination efficiency of the wild type. Incorporation of a Re-pegRNA-mediated scar-free strategy further enhanced editing precision, allowing scarless insertions, deletions, replacements, inversions, and translocations at the chromosomal level. Key applications include a 315-kb inversion in rice conferring herbicide resistance, scarless chromosome fusions, and a 12-Mb inversion at human disease-related sites. These advances significantly broaden the scope of genome editing applications in molecular breeding, therapeutic development, and synthetic biology.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.