直接测量基于sz2080tm的抗蚀剂在515 nm的双光子吸收和折射特性:对3D打印的见解

IF 6.6 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Michalis Stavrou, Dimitra Ladika, Edvinas Skliutas, Vytautas Jukna, David Gray, Maria Farsari, Saulius Juodkazis, Mangirdas Malinauskas
{"title":"直接测量基于sz2080tm的抗蚀剂在515 nm的双光子吸收和折射特性:对3D打印的见解","authors":"Michalis Stavrou, Dimitra Ladika, Edvinas Skliutas, Vytautas Jukna, David Gray, Maria Farsari, Saulius Juodkazis, Mangirdas Malinauskas","doi":"10.1515/nanoph-2025-0066","DOIUrl":null,"url":null,"abstract":"Accurate knowledge of nonlinear optical parameters is essential for optimizing energy deposition in ultrafast laser 3D printing, yet these values remain undetermined for many commonly used materials. In this study, we address this gap by experimentally determining the two-photon absorption (TPA) and non-linear refraction coefficients (<jats:italic>β</jats:italic> and <jats:italic>n</jats:italic> <jats:sub>2</jats:sub>) of the widely used SZ2080<jats:sup>TM</jats:sup> resist with the photo-initiators (PI) IRG369 and BIS (Irgacure 369 and 4,4′ bis(diethylamino)-benzophenone or Michler’s ketone). Using the Z-scan method at 515 nm with a low repetition rate (1 kHz) to avoid thermal accumulation, we found that the nonlinear response of the host polymer has a considerable contribution to energy deposition despite the addition of the PI, as the host polymer makes up the majority of 99 % in the solution. The TPA cross section <jats:italic>σ</jats:italic> were 5.7 ± 0.4 GM (1 GM = 10<jats:sup>−50</jats:sup> cm<jats:sup>4</jats:sup> s photon<jats:sup>−1</jats:sup>) for pure SZ2080<jats:sup>TM</jats:sup>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mo>∼</m:mo> <m:mn>40</m:mn> </m:math> <jats:tex-math>$\\sim 40$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_nanoph-2025-0066_ineq_001.png\"/> </jats:alternatives> </jats:inline-formula> GM for IRG and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mo>∼</m:mo> <m:mn>87</m:mn> </m:math> <jats:tex-math>$\\sim 87$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_nanoph-2025-0066_ineq_002.png\"/> </jats:alternatives> </jats:inline-formula> GM for BIS at 515 nm. The nonlinear refractive index <jats:italic>n</jats:italic> <jats:sub>2</jats:sub> for pure polymer was (85.3 ± 6) × 10<jats:sup>−5</jats:sup> cm<jats:sup>2</jats:sup>/TW, favoring a self-focusing, and was larger than that for PIs: <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mo>∼</m:mo> <m:mn>16</m:mn> <m:mo>×</m:mo> <m:mn>1</m:mn> <m:msup> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>5</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>$\\sim 16{\\times}1{0}^{-5}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_nanoph-2025-0066_ineq_003.png\"/> </jats:alternatives> </jats:inline-formula> cm<jats:sup>2</jats:sup>/TW (IRG369) and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mo>∼</m:mo> <m:mn>2.8</m:mn> <m:mo>×</m:mo> <m:mn>1</m:mn> <m:msup> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>5</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>$\\sim 2.8{\\times}1{0}^{-5}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_nanoph-2025-0066_ineq_004.png\"/> </jats:alternatives> </jats:inline-formula> cm<jats:sup>2</jats:sup>/TW (BIS). Hence, the properties of the host material govern non-linear light propagation, although, in high numerical aperture focusing, self-focusing has a minor contribution to the variation of refractive index. Crucially, the determined TPA coefficients for pure SZ2080<jats:sup>TM</jats:sup> provide experimental evidence that it can initiate polymerization without PIs, enabling a more sustainable and environmentally friendly fabrication route by avoiding the use of toxic additive compounds. These findings will allow for the estimation of exact energy deposition in 3D laser printing using ultrashort laser pulses and support the development of an initiator-free additive manufacturing approach.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"30 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct measurement of two-photon absorption and refraction properties of SZ2080TM-based resists at 515 nm: insights into 3D printing\",\"authors\":\"Michalis Stavrou, Dimitra Ladika, Edvinas Skliutas, Vytautas Jukna, David Gray, Maria Farsari, Saulius Juodkazis, Mangirdas Malinauskas\",\"doi\":\"10.1515/nanoph-2025-0066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate knowledge of nonlinear optical parameters is essential for optimizing energy deposition in ultrafast laser 3D printing, yet these values remain undetermined for many commonly used materials. In this study, we address this gap by experimentally determining the two-photon absorption (TPA) and non-linear refraction coefficients (<jats:italic>β</jats:italic> and <jats:italic>n</jats:italic> <jats:sub>2</jats:sub>) of the widely used SZ2080<jats:sup>TM</jats:sup> resist with the photo-initiators (PI) IRG369 and BIS (Irgacure 369 and 4,4′ bis(diethylamino)-benzophenone or Michler’s ketone). Using the Z-scan method at 515 nm with a low repetition rate (1 kHz) to avoid thermal accumulation, we found that the nonlinear response of the host polymer has a considerable contribution to energy deposition despite the addition of the PI, as the host polymer makes up the majority of 99 % in the solution. The TPA cross section <jats:italic>σ</jats:italic> were 5.7 ± 0.4 GM (1 GM = 10<jats:sup>−50</jats:sup> cm<jats:sup>4</jats:sup> s photon<jats:sup>−1</jats:sup>) for pure SZ2080<jats:sup>TM</jats:sup>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mo>∼</m:mo> <m:mn>40</m:mn> </m:math> <jats:tex-math>$\\\\sim 40$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_nanoph-2025-0066_ineq_001.png\\\"/> </jats:alternatives> </jats:inline-formula> GM for IRG and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mo>∼</m:mo> <m:mn>87</m:mn> </m:math> <jats:tex-math>$\\\\sim 87$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_nanoph-2025-0066_ineq_002.png\\\"/> </jats:alternatives> </jats:inline-formula> GM for BIS at 515 nm. The nonlinear refractive index <jats:italic>n</jats:italic> <jats:sub>2</jats:sub> for pure polymer was (85.3 ± 6) × 10<jats:sup>−5</jats:sup> cm<jats:sup>2</jats:sup>/TW, favoring a self-focusing, and was larger than that for PIs: <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mo>∼</m:mo> <m:mn>16</m:mn> <m:mo>×</m:mo> <m:mn>1</m:mn> <m:msup> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>5</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>$\\\\sim 16{\\\\times}1{0}^{-5}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_nanoph-2025-0066_ineq_003.png\\\"/> </jats:alternatives> </jats:inline-formula> cm<jats:sup>2</jats:sup>/TW (IRG369) and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mo>∼</m:mo> <m:mn>2.8</m:mn> <m:mo>×</m:mo> <m:mn>1</m:mn> <m:msup> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>5</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>$\\\\sim 2.8{\\\\times}1{0}^{-5}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_nanoph-2025-0066_ineq_004.png\\\"/> </jats:alternatives> </jats:inline-formula> cm<jats:sup>2</jats:sup>/TW (BIS). Hence, the properties of the host material govern non-linear light propagation, although, in high numerical aperture focusing, self-focusing has a minor contribution to the variation of refractive index. Crucially, the determined TPA coefficients for pure SZ2080<jats:sup>TM</jats:sup> provide experimental evidence that it can initiate polymerization without PIs, enabling a more sustainable and environmentally friendly fabrication route by avoiding the use of toxic additive compounds. These findings will allow for the estimation of exact energy deposition in 3D laser printing using ultrashort laser pulses and support the development of an initiator-free additive manufacturing approach.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2025-0066\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0066","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

准确了解非线性光学参数对于优化超快激光3D打印中的能量沉积至关重要,但对于许多常用材料而言,这些值仍未确定。在这项研究中,我们通过实验确定了广泛使用的SZ2080TM抗蚀剂的双光子吸收(TPA)和非线性折射系数(β和n2),其中光引发剂(PI) IRG369和BIS (Irgacure 369和4,4 '双(二乙基氨基)-二苯甲酮或米歇尔酮)。使用515 nm低重复率(1 kHz)的z扫描方法以避免热积累,我们发现尽管添加了PI,但宿主聚合物的非线性响应对能量沉积有相当大的贡献,因为宿主聚合物占溶液中99%的大部分。在515 nm处,纯SZ2080TM的TPA截面σ为5.7±0.4 GM (1 GM = 10−50 cm4 s光子−1),IRG为~ 40$ sim 40$ GM, BIS为~ 87$ sim 87$ GM。纯聚合物的非线性折射率n2为(85.3±6)× 10−5 cm2/TW,有利于自聚焦,且大于pi的非线性折射率n2: ~ 16 × 10−5 $ $ sim 16{\times}1{0}^{-5}$ cm2/TW (IRG369)和~ 2.8 × 10−5 $ $ sim 2.8{\times}1{0}^{-5}$ cm2/TW (BIS)。因此,虽然在高数值孔径聚焦中,自聚焦对折射率变化的贡献很小,但宿主材料的性质控制着非线性光的传播。至关重要的是,纯SZ2080TM的TPA系数的确定提供了实验证据,证明它可以在没有pi的情况下引发聚合,通过避免使用有毒添加剂化合物,实现更可持续和环保的制造路线。这些发现将允许使用超短激光脉冲估计3D激光打印中的精确能量沉积,并支持无引发剂增材制造方法的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct measurement of two-photon absorption and refraction properties of SZ2080TM-based resists at 515 nm: insights into 3D printing
Accurate knowledge of nonlinear optical parameters is essential for optimizing energy deposition in ultrafast laser 3D printing, yet these values remain undetermined for many commonly used materials. In this study, we address this gap by experimentally determining the two-photon absorption (TPA) and non-linear refraction coefficients (β and n 2) of the widely used SZ2080TM resist with the photo-initiators (PI) IRG369 and BIS (Irgacure 369 and 4,4′ bis(diethylamino)-benzophenone or Michler’s ketone). Using the Z-scan method at 515 nm with a low repetition rate (1 kHz) to avoid thermal accumulation, we found that the nonlinear response of the host polymer has a considerable contribution to energy deposition despite the addition of the PI, as the host polymer makes up the majority of 99 % in the solution. The TPA cross section σ were 5.7 ± 0.4 GM (1 GM = 10−50 cm4 s photon−1) for pure SZ2080TM, 40 $\sim 40$ GM for IRG and 87 $\sim 87$ GM for BIS at 515 nm. The nonlinear refractive index n 2 for pure polymer was (85.3 ± 6) × 10−5 cm2/TW, favoring a self-focusing, and was larger than that for PIs: 16 × 1 0 5 $\sim 16{\times}1{0}^{-5}$ cm2/TW (IRG369) and 2.8 × 1 0 5 $\sim 2.8{\times}1{0}^{-5}$ cm2/TW (BIS). Hence, the properties of the host material govern non-linear light propagation, although, in high numerical aperture focusing, self-focusing has a minor contribution to the variation of refractive index. Crucially, the determined TPA coefficients for pure SZ2080TM provide experimental evidence that it can initiate polymerization without PIs, enabling a more sustainable and environmentally friendly fabrication route by avoiding the use of toxic additive compounds. These findings will allow for the estimation of exact energy deposition in 3D laser printing using ultrashort laser pulses and support the development of an initiator-free additive manufacturing approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信