Michalis Stavrou, Dimitra Ladika, Edvinas Skliutas, Vytautas Jukna, David Gray, Maria Farsari, Saulius Juodkazis, Mangirdas Malinauskas
{"title":"直接测量基于sz2080tm的抗蚀剂在515 nm的双光子吸收和折射特性:对3D打印的见解","authors":"Michalis Stavrou, Dimitra Ladika, Edvinas Skliutas, Vytautas Jukna, David Gray, Maria Farsari, Saulius Juodkazis, Mangirdas Malinauskas","doi":"10.1515/nanoph-2025-0066","DOIUrl":null,"url":null,"abstract":"Accurate knowledge of nonlinear optical parameters is essential for optimizing energy deposition in ultrafast laser 3D printing, yet these values remain undetermined for many commonly used materials. In this study, we address this gap by experimentally determining the two-photon absorption (TPA) and non-linear refraction coefficients (<jats:italic>β</jats:italic> and <jats:italic>n</jats:italic> <jats:sub>2</jats:sub>) of the widely used SZ2080<jats:sup>TM</jats:sup> resist with the photo-initiators (PI) IRG369 and BIS (Irgacure 369 and 4,4′ bis(diethylamino)-benzophenone or Michler’s ketone). Using the Z-scan method at 515 nm with a low repetition rate (1 kHz) to avoid thermal accumulation, we found that the nonlinear response of the host polymer has a considerable contribution to energy deposition despite the addition of the PI, as the host polymer makes up the majority of 99 % in the solution. The TPA cross section <jats:italic>σ</jats:italic> were 5.7 ± 0.4 GM (1 GM = 10<jats:sup>−50</jats:sup> cm<jats:sup>4</jats:sup> s photon<jats:sup>−1</jats:sup>) for pure SZ2080<jats:sup>TM</jats:sup>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mo>∼</m:mo> <m:mn>40</m:mn> </m:math> <jats:tex-math>$\\sim 40$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_nanoph-2025-0066_ineq_001.png\"/> </jats:alternatives> </jats:inline-formula> GM for IRG and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mo>∼</m:mo> <m:mn>87</m:mn> </m:math> <jats:tex-math>$\\sim 87$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_nanoph-2025-0066_ineq_002.png\"/> </jats:alternatives> </jats:inline-formula> GM for BIS at 515 nm. The nonlinear refractive index <jats:italic>n</jats:italic> <jats:sub>2</jats:sub> for pure polymer was (85.3 ± 6) × 10<jats:sup>−5</jats:sup> cm<jats:sup>2</jats:sup>/TW, favoring a self-focusing, and was larger than that for PIs: <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mo>∼</m:mo> <m:mn>16</m:mn> <m:mo>×</m:mo> <m:mn>1</m:mn> <m:msup> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>5</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>$\\sim 16{\\times}1{0}^{-5}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_nanoph-2025-0066_ineq_003.png\"/> </jats:alternatives> </jats:inline-formula> cm<jats:sup>2</jats:sup>/TW (IRG369) and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mo>∼</m:mo> <m:mn>2.8</m:mn> <m:mo>×</m:mo> <m:mn>1</m:mn> <m:msup> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>5</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>$\\sim 2.8{\\times}1{0}^{-5}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_nanoph-2025-0066_ineq_004.png\"/> </jats:alternatives> </jats:inline-formula> cm<jats:sup>2</jats:sup>/TW (BIS). Hence, the properties of the host material govern non-linear light propagation, although, in high numerical aperture focusing, self-focusing has a minor contribution to the variation of refractive index. Crucially, the determined TPA coefficients for pure SZ2080<jats:sup>TM</jats:sup> provide experimental evidence that it can initiate polymerization without PIs, enabling a more sustainable and environmentally friendly fabrication route by avoiding the use of toxic additive compounds. These findings will allow for the estimation of exact energy deposition in 3D laser printing using ultrashort laser pulses and support the development of an initiator-free additive manufacturing approach.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"30 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct measurement of two-photon absorption and refraction properties of SZ2080TM-based resists at 515 nm: insights into 3D printing\",\"authors\":\"Michalis Stavrou, Dimitra Ladika, Edvinas Skliutas, Vytautas Jukna, David Gray, Maria Farsari, Saulius Juodkazis, Mangirdas Malinauskas\",\"doi\":\"10.1515/nanoph-2025-0066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate knowledge of nonlinear optical parameters is essential for optimizing energy deposition in ultrafast laser 3D printing, yet these values remain undetermined for many commonly used materials. In this study, we address this gap by experimentally determining the two-photon absorption (TPA) and non-linear refraction coefficients (<jats:italic>β</jats:italic> and <jats:italic>n</jats:italic> <jats:sub>2</jats:sub>) of the widely used SZ2080<jats:sup>TM</jats:sup> resist with the photo-initiators (PI) IRG369 and BIS (Irgacure 369 and 4,4′ bis(diethylamino)-benzophenone or Michler’s ketone). Using the Z-scan method at 515 nm with a low repetition rate (1 kHz) to avoid thermal accumulation, we found that the nonlinear response of the host polymer has a considerable contribution to energy deposition despite the addition of the PI, as the host polymer makes up the majority of 99 % in the solution. The TPA cross section <jats:italic>σ</jats:italic> were 5.7 ± 0.4 GM (1 GM = 10<jats:sup>−50</jats:sup> cm<jats:sup>4</jats:sup> s photon<jats:sup>−1</jats:sup>) for pure SZ2080<jats:sup>TM</jats:sup>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mo>∼</m:mo> <m:mn>40</m:mn> </m:math> <jats:tex-math>$\\\\sim 40$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_nanoph-2025-0066_ineq_001.png\\\"/> </jats:alternatives> </jats:inline-formula> GM for IRG and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mo>∼</m:mo> <m:mn>87</m:mn> </m:math> <jats:tex-math>$\\\\sim 87$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_nanoph-2025-0066_ineq_002.png\\\"/> </jats:alternatives> </jats:inline-formula> GM for BIS at 515 nm. The nonlinear refractive index <jats:italic>n</jats:italic> <jats:sub>2</jats:sub> for pure polymer was (85.3 ± 6) × 10<jats:sup>−5</jats:sup> cm<jats:sup>2</jats:sup>/TW, favoring a self-focusing, and was larger than that for PIs: <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mo>∼</m:mo> <m:mn>16</m:mn> <m:mo>×</m:mo> <m:mn>1</m:mn> <m:msup> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>5</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>$\\\\sim 16{\\\\times}1{0}^{-5}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_nanoph-2025-0066_ineq_003.png\\\"/> </jats:alternatives> </jats:inline-formula> cm<jats:sup>2</jats:sup>/TW (IRG369) and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mo>∼</m:mo> <m:mn>2.8</m:mn> <m:mo>×</m:mo> <m:mn>1</m:mn> <m:msup> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>5</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>$\\\\sim 2.8{\\\\times}1{0}^{-5}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_nanoph-2025-0066_ineq_004.png\\\"/> </jats:alternatives> </jats:inline-formula> cm<jats:sup>2</jats:sup>/TW (BIS). Hence, the properties of the host material govern non-linear light propagation, although, in high numerical aperture focusing, self-focusing has a minor contribution to the variation of refractive index. Crucially, the determined TPA coefficients for pure SZ2080<jats:sup>TM</jats:sup> provide experimental evidence that it can initiate polymerization without PIs, enabling a more sustainable and environmentally friendly fabrication route by avoiding the use of toxic additive compounds. These findings will allow for the estimation of exact energy deposition in 3D laser printing using ultrashort laser pulses and support the development of an initiator-free additive manufacturing approach.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2025-0066\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0066","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Direct measurement of two-photon absorption and refraction properties of SZ2080TM-based resists at 515 nm: insights into 3D printing
Accurate knowledge of nonlinear optical parameters is essential for optimizing energy deposition in ultrafast laser 3D printing, yet these values remain undetermined for many commonly used materials. In this study, we address this gap by experimentally determining the two-photon absorption (TPA) and non-linear refraction coefficients (β and n2) of the widely used SZ2080TM resist with the photo-initiators (PI) IRG369 and BIS (Irgacure 369 and 4,4′ bis(diethylamino)-benzophenone or Michler’s ketone). Using the Z-scan method at 515 nm with a low repetition rate (1 kHz) to avoid thermal accumulation, we found that the nonlinear response of the host polymer has a considerable contribution to energy deposition despite the addition of the PI, as the host polymer makes up the majority of 99 % in the solution. The TPA cross section σ were 5.7 ± 0.4 GM (1 GM = 10−50 cm4 s photon−1) for pure SZ2080TM, ∼40$\sim 40$ GM for IRG and ∼87$\sim 87$ GM for BIS at 515 nm. The nonlinear refractive index n2 for pure polymer was (85.3 ± 6) × 10−5 cm2/TW, favoring a self-focusing, and was larger than that for PIs: ∼16×10−5$\sim 16{\times}1{0}^{-5}$ cm2/TW (IRG369) and ∼2.8×10−5$\sim 2.8{\times}1{0}^{-5}$ cm2/TW (BIS). Hence, the properties of the host material govern non-linear light propagation, although, in high numerical aperture focusing, self-focusing has a minor contribution to the variation of refractive index. Crucially, the determined TPA coefficients for pure SZ2080TM provide experimental evidence that it can initiate polymerization without PIs, enabling a more sustainable and environmentally friendly fabrication route by avoiding the use of toxic additive compounds. These findings will allow for the estimation of exact energy deposition in 3D laser printing using ultrashort laser pulses and support the development of an initiator-free additive manufacturing approach.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.