Yarong Wu, Chao Yang, Kai Mu, Yan Guo, Yajun Song, Ruifu Yang, Yujun Cui
{"title":"通过242个全基因组重排分析鼠疫耶尔森氏菌的进化","authors":"Yarong Wu, Chao Yang, Kai Mu, Yan Guo, Yajun Song, Ruifu Yang, Yujun Cui","doi":"10.1038/s41588-025-02264-5","DOIUrl":null,"url":null,"abstract":"Yersinia pestis, the bacterium that causes the plague, has a dynamic genome with highly conserved fragments prone to rearrangement, influencing gene function and evolution. However, understanding these patterns is limited by few complete genomes and analytical methods. We developed a dual-validation strategy to analyze 242 complete genomes of Y. pestis natural isolates from diverse phylogroups. We detected 459 rearrangements, which enhanced phylogenetic resolution and resolved the third pandemic’s polytomy. Rearrangements are primarily mediated by four common insertion sequences, with IS1661 and IS100 showing the highest activity. These rearrangements are under strong positive selection, evidenced by 43 hotspots and convergent evolution in the rpsO-pnp operon, whose disruptions and reconnections altered gene expressions and temperature stress responses. We also identified unique structural alterations in human avirulent phylogroups, inactivating three genes and reordering 17 intergenic regions, some affecting virulence-related genes. This study provides a fresh perspective on Y. pestis evolution, revealing experimental targets and establishing a methodology for microbes with frequent rearrangements. Analysis of synteny blocks and genomic rearrangement patterns of 178 newly sequenced and 64 publicly available complete genomes of Yersinia pestis highlights the impact of key variations on genes involved in adaptation and virulence.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 8","pages":"1994-2003"},"PeriodicalIF":29.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into Yersinia pestis evolution through rearrangement analysis of 242 complete genomes\",\"authors\":\"Yarong Wu, Chao Yang, Kai Mu, Yan Guo, Yajun Song, Ruifu Yang, Yujun Cui\",\"doi\":\"10.1038/s41588-025-02264-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Yersinia pestis, the bacterium that causes the plague, has a dynamic genome with highly conserved fragments prone to rearrangement, influencing gene function and evolution. However, understanding these patterns is limited by few complete genomes and analytical methods. We developed a dual-validation strategy to analyze 242 complete genomes of Y. pestis natural isolates from diverse phylogroups. We detected 459 rearrangements, which enhanced phylogenetic resolution and resolved the third pandemic’s polytomy. Rearrangements are primarily mediated by four common insertion sequences, with IS1661 and IS100 showing the highest activity. These rearrangements are under strong positive selection, evidenced by 43 hotspots and convergent evolution in the rpsO-pnp operon, whose disruptions and reconnections altered gene expressions and temperature stress responses. We also identified unique structural alterations in human avirulent phylogroups, inactivating three genes and reordering 17 intergenic regions, some affecting virulence-related genes. This study provides a fresh perspective on Y. pestis evolution, revealing experimental targets and establishing a methodology for microbes with frequent rearrangements. Analysis of synteny blocks and genomic rearrangement patterns of 178 newly sequenced and 64 publicly available complete genomes of Yersinia pestis highlights the impact of key variations on genes involved in adaptation and virulence.\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":\"57 8\",\"pages\":\"1994-2003\"},\"PeriodicalIF\":29.0000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41588-025-02264-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-025-02264-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Insights into Yersinia pestis evolution through rearrangement analysis of 242 complete genomes
Yersinia pestis, the bacterium that causes the plague, has a dynamic genome with highly conserved fragments prone to rearrangement, influencing gene function and evolution. However, understanding these patterns is limited by few complete genomes and analytical methods. We developed a dual-validation strategy to analyze 242 complete genomes of Y. pestis natural isolates from diverse phylogroups. We detected 459 rearrangements, which enhanced phylogenetic resolution and resolved the third pandemic’s polytomy. Rearrangements are primarily mediated by four common insertion sequences, with IS1661 and IS100 showing the highest activity. These rearrangements are under strong positive selection, evidenced by 43 hotspots and convergent evolution in the rpsO-pnp operon, whose disruptions and reconnections altered gene expressions and temperature stress responses. We also identified unique structural alterations in human avirulent phylogroups, inactivating three genes and reordering 17 intergenic regions, some affecting virulence-related genes. This study provides a fresh perspective on Y. pestis evolution, revealing experimental targets and establishing a methodology for microbes with frequent rearrangements. Analysis of synteny blocks and genomic rearrangement patterns of 178 newly sequenced and 64 publicly available complete genomes of Yersinia pestis highlights the impact of key variations on genes involved in adaptation and virulence.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution