{"title":"杂交细胞膜功能化纳米药物通过糖酵解代谢和肿瘤微环境的双重调节协同增强铜胞嘧啶介导的免疫治疗。","authors":"Qiang Li, Meng Dang, Ao He, Xiaoye Li, Meng Ding, Zhuo Dai, Yu Zhang, Weijun Xiu, Siyu Wang, Zhusheng Huang, Yongbin Mou*, Lianhui Wang* and Heng Dong*, ","doi":"10.1021/acsnano.5c10671","DOIUrl":null,"url":null,"abstract":"<p >Glycolytic activity of cancer cells not only reduces their vulnerability to cuproptosis but also heightens the immunosuppressive state of the tumor microenvironment (TME). Our study introduces a nanoplatform called dual-remodeling cuproptosis-inducing agent with hybrid cell membrane coating (DREAM), which is crafted to simultaneously modify the metabolic and immunological landscapes of the TME to enhance cuproptosis-driven immunotherapy. This platform exploits cancer-cell-derived membranes for homologous targeting, enhancing tumor specificity, intratumoral penetration, and intracellular copper delivery. DREAM’s disruption of glycolysis intensifies the copper overload, triggering cuproptosis in cancer cells. Additionally, it alleviates immunosuppression and bolsters immune responses facilitated by the immunogenic cell death from cuproptosis, further potentiated by the immunostimulatory effect of M1 macrophage membranes. The outcome is a pronounced efficacy in curbing tumor growth and distant metastasis in squamous cell carcinoma and also in suppressing melanoma proliferation and lung metastasis. This research underscores the vital interaction among inhibiting glycolysis, enhancing sensitivity to cuproptosis, and activating immune responses, thereby paving a feasible and integrated pathway in cancer immunotherapy.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 31","pages":"28913–28932"},"PeriodicalIF":16.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Cell Membrane-Functionalized Nanoagents Synergistically Enhance Cuproptosis-Mediated Immunotherapy by Dual Modulation of Glycolytic Metabolism and Tumor Microenvironments\",\"authors\":\"Qiang Li, Meng Dang, Ao He, Xiaoye Li, Meng Ding, Zhuo Dai, Yu Zhang, Weijun Xiu, Siyu Wang, Zhusheng Huang, Yongbin Mou*, Lianhui Wang* and Heng Dong*, \",\"doi\":\"10.1021/acsnano.5c10671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Glycolytic activity of cancer cells not only reduces their vulnerability to cuproptosis but also heightens the immunosuppressive state of the tumor microenvironment (TME). Our study introduces a nanoplatform called dual-remodeling cuproptosis-inducing agent with hybrid cell membrane coating (DREAM), which is crafted to simultaneously modify the metabolic and immunological landscapes of the TME to enhance cuproptosis-driven immunotherapy. This platform exploits cancer-cell-derived membranes for homologous targeting, enhancing tumor specificity, intratumoral penetration, and intracellular copper delivery. DREAM’s disruption of glycolysis intensifies the copper overload, triggering cuproptosis in cancer cells. Additionally, it alleviates immunosuppression and bolsters immune responses facilitated by the immunogenic cell death from cuproptosis, further potentiated by the immunostimulatory effect of M1 macrophage membranes. The outcome is a pronounced efficacy in curbing tumor growth and distant metastasis in squamous cell carcinoma and also in suppressing melanoma proliferation and lung metastasis. This research underscores the vital interaction among inhibiting glycolysis, enhancing sensitivity to cuproptosis, and activating immune responses, thereby paving a feasible and integrated pathway in cancer immunotherapy.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 31\",\"pages\":\"28913–28932\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c10671\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c10671","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hybrid Cell Membrane-Functionalized Nanoagents Synergistically Enhance Cuproptosis-Mediated Immunotherapy by Dual Modulation of Glycolytic Metabolism and Tumor Microenvironments
Glycolytic activity of cancer cells not only reduces their vulnerability to cuproptosis but also heightens the immunosuppressive state of the tumor microenvironment (TME). Our study introduces a nanoplatform called dual-remodeling cuproptosis-inducing agent with hybrid cell membrane coating (DREAM), which is crafted to simultaneously modify the metabolic and immunological landscapes of the TME to enhance cuproptosis-driven immunotherapy. This platform exploits cancer-cell-derived membranes for homologous targeting, enhancing tumor specificity, intratumoral penetration, and intracellular copper delivery. DREAM’s disruption of glycolysis intensifies the copper overload, triggering cuproptosis in cancer cells. Additionally, it alleviates immunosuppression and bolsters immune responses facilitated by the immunogenic cell death from cuproptosis, further potentiated by the immunostimulatory effect of M1 macrophage membranes. The outcome is a pronounced efficacy in curbing tumor growth and distant metastasis in squamous cell carcinoma and also in suppressing melanoma proliferation and lung metastasis. This research underscores the vital interaction among inhibiting glycolysis, enhancing sensitivity to cuproptosis, and activating immune responses, thereby paving a feasible and integrated pathway in cancer immunotherapy.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.