基于深度学习的真菌性角膜炎和棘阿米巴角膜炎共聚焦显微镜分类。

IF 5.6
Rohith Erukulla, Kosar Esmaili, Amir Rahdar, Mehdi Aminizade, Kasra Cheraqpour, Seyed Ali Tabatabaei, Zahra Bibak-Bejandi, Seyed Farzad Mohammadi, Siamak Yousefi, Mohammad Soleimani
{"title":"基于深度学习的真菌性角膜炎和棘阿米巴角膜炎共聚焦显微镜分类。","authors":"Rohith Erukulla, Kosar Esmaili, Amir Rahdar, Mehdi Aminizade, Kasra Cheraqpour, Seyed Ali Tabatabaei, Zahra Bibak-Bejandi, Seyed Farzad Mohammadi, Siamak Yousefi, Mohammad Soleimani","doi":"10.1016/j.jtos.2025.07.012","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Fungal and Acanthamoeba keratitis carry the worst prognoses among microbial keratitis (IK), owing to challenges in diagnosis and treatment. This study assesses the feasibility of deep learning (DL) to classify types of IK-fungal keratitis (FK), Acanthamoeba keratitis (AK), and nonspecific keratitis (NSK) (any other corneal inflammation)-and subtyping of FK using in vivo confocal microscopy.</p><p><strong>Methods: </strong>In this study, we employed transfer learning with a ResNet50 architecture to classify culture-confirmed keratitis types in a dataset of 1975 images (1137 FK, 457 AK, and 381 NSK) obtained from the Heidelberg Retinal Tomograph 3 (HRT 3). The dataset was split into training and testing sets. Data augmentation (e.g., rotation, zooming) was applied to the training subset to address class imbalance, and class weighting was used (5x for AK, 30x for NSK). Both models were trained for 150 epochs using the Adam optimizer with 5-fold cross-validation. Model 1 performed multi-class classification (FK, AK, NSK). Model 2 classified FK cases as either filamentous or non-filamentous.</p><p><strong>Results: </strong>Model 1 achieved a macro average accuracy of 87 % and a weighted average accuracy of 89 %. Precision and recall were high for AK (93 %, 96 %) and FK (90 %, 92 %), while NSK showed lower performance (78 %, 71 %). Model 2 demonstrated an accuracy of 85 % in subtyping FK, with an F1-score of 0.81 for filamentous and 0.85 for non-filamentous, an ROC AUC of 0.94, and a PR AUC of 0.95.</p><p><strong>Conclusion: </strong>DL models can accurately classify IK and subtype FK, enhancing diagnostic accuracy and informing targeted treatment strategies.</p>","PeriodicalId":94247,"journal":{"name":"The ocular surface","volume":" ","pages":"203-208"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based classification of fungal and Acanthamoeba keratitis using confocal microscopy.\",\"authors\":\"Rohith Erukulla, Kosar Esmaili, Amir Rahdar, Mehdi Aminizade, Kasra Cheraqpour, Seyed Ali Tabatabaei, Zahra Bibak-Bejandi, Seyed Farzad Mohammadi, Siamak Yousefi, Mohammad Soleimani\",\"doi\":\"10.1016/j.jtos.2025.07.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Fungal and Acanthamoeba keratitis carry the worst prognoses among microbial keratitis (IK), owing to challenges in diagnosis and treatment. This study assesses the feasibility of deep learning (DL) to classify types of IK-fungal keratitis (FK), Acanthamoeba keratitis (AK), and nonspecific keratitis (NSK) (any other corneal inflammation)-and subtyping of FK using in vivo confocal microscopy.</p><p><strong>Methods: </strong>In this study, we employed transfer learning with a ResNet50 architecture to classify culture-confirmed keratitis types in a dataset of 1975 images (1137 FK, 457 AK, and 381 NSK) obtained from the Heidelberg Retinal Tomograph 3 (HRT 3). The dataset was split into training and testing sets. Data augmentation (e.g., rotation, zooming) was applied to the training subset to address class imbalance, and class weighting was used (5x for AK, 30x for NSK). Both models were trained for 150 epochs using the Adam optimizer with 5-fold cross-validation. Model 1 performed multi-class classification (FK, AK, NSK). Model 2 classified FK cases as either filamentous or non-filamentous.</p><p><strong>Results: </strong>Model 1 achieved a macro average accuracy of 87 % and a weighted average accuracy of 89 %. Precision and recall were high for AK (93 %, 96 %) and FK (90 %, 92 %), while NSK showed lower performance (78 %, 71 %). Model 2 demonstrated an accuracy of 85 % in subtyping FK, with an F1-score of 0.81 for filamentous and 0.85 for non-filamentous, an ROC AUC of 0.94, and a PR AUC of 0.95.</p><p><strong>Conclusion: </strong>DL models can accurately classify IK and subtype FK, enhancing diagnostic accuracy and informing targeted treatment strategies.</p>\",\"PeriodicalId\":94247,\"journal\":{\"name\":\"The ocular surface\",\"volume\":\" \",\"pages\":\"203-208\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The ocular surface\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jtos.2025.07.012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ocular surface","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jtos.2025.07.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在微生物性角膜炎(IK)中,真菌和棘阿米巴角膜炎预后最差,这是由于诊断和治疗方面的挑战。本研究评估了深度学习(DL)分类真菌性角膜炎(FK)、棘阿米巴角膜炎(AK)和非特异性角膜炎(NSK)(任何其他角膜炎症)的可行性,并利用体内共聚焦显微镜对FK进行分型。方法:在本研究中,我们使用了带有ResNet50架构的迁移学习,对海德堡视网膜断层扫描3 (HRT 3)获得的1,975张图像(1,137张FK, 457张AK和381张NSK)进行了培养确认的角膜炎类型分类。数据集被分为训练集和测试集。将数据增强(例如,旋转、缩放)应用于训练子集以解决类不平衡问题,并使用类加权(AK为5倍,NSK为30倍)。两个模型都使用具有5倍交叉验证的Adam优化器训练了150个epoch。模型1进行多类分类(FK, AK, NSK)。模型2将FK病例分为丝状或非丝状。结果:模型1的宏观平均准确率为87%,加权平均准确率为89%。AK(93%, 96%)和FK(90%, 92%)的准确率和召回率较高,而NSK的准确率和召回率较低(78%,71%)。模型2显示FK亚型的准确率为85%,丝状和非丝状的f1得分分别为0.81和0.85,ROC AUC为0.94,PR AUC为0.95。结论:DL模型能准确地对IK和FK亚型进行分类,提高诊断准确率,为有针对性的治疗提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning-based classification of fungal and Acanthamoeba keratitis using confocal microscopy.

Introduction: Fungal and Acanthamoeba keratitis carry the worst prognoses among microbial keratitis (IK), owing to challenges in diagnosis and treatment. This study assesses the feasibility of deep learning (DL) to classify types of IK-fungal keratitis (FK), Acanthamoeba keratitis (AK), and nonspecific keratitis (NSK) (any other corneal inflammation)-and subtyping of FK using in vivo confocal microscopy.

Methods: In this study, we employed transfer learning with a ResNet50 architecture to classify culture-confirmed keratitis types in a dataset of 1975 images (1137 FK, 457 AK, and 381 NSK) obtained from the Heidelberg Retinal Tomograph 3 (HRT 3). The dataset was split into training and testing sets. Data augmentation (e.g., rotation, zooming) was applied to the training subset to address class imbalance, and class weighting was used (5x for AK, 30x for NSK). Both models were trained for 150 epochs using the Adam optimizer with 5-fold cross-validation. Model 1 performed multi-class classification (FK, AK, NSK). Model 2 classified FK cases as either filamentous or non-filamentous.

Results: Model 1 achieved a macro average accuracy of 87 % and a weighted average accuracy of 89 %. Precision and recall were high for AK (93 %, 96 %) and FK (90 %, 92 %), while NSK showed lower performance (78 %, 71 %). Model 2 demonstrated an accuracy of 85 % in subtyping FK, with an F1-score of 0.81 for filamentous and 0.85 for non-filamentous, an ROC AUC of 0.94, and a PR AUC of 0.95.

Conclusion: DL models can accurately classify IK and subtype FK, enhancing diagnostic accuracy and informing targeted treatment strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信