地温和孔隙水压力对开挖卸荷砂岩力学影响的试验研究。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Sheng Gong, Lili Chen, Xingzhou Chen, Zhenhan Li
{"title":"地温和孔隙水压力对开挖卸荷砂岩力学影响的试验研究。","authors":"Sheng Gong, Lili Chen, Xingzhou Chen, Zhenhan Li","doi":"10.1038/s41598-025-13761-2","DOIUrl":null,"url":null,"abstract":"<p><p>As tunnel engineering in western China advances deeper underground, it encounters increasing issues of high ground temperature and high water pressure. To study the mechanical properties of unloading sandstone under the combined effects of temperature and pore water pressure, triaxial unloading and reloading experiments were conducted on sandstone under different temperatures, pore water pressures, and confining pressures. The results showed: (1) The peak strength of unloading sandstone decreases with increasing temperature and pore water pressure. The elastic modulus of unloading sandstone increases with temperature but decreases with increasing pore water pressure. (2) The influence of pore water pressure on the unloading deformation of sandstone has a threshold. At low pore water pressure (1 MPa), temperature has little effect on the deformation of unloading sandstone. At medium to high pore water pressures (2, 3 MPa), temperature-induced unloading softening characteristics are obvious. (3) SEM images show that with increasing temperature, the number and width of microcracks in the rock increase. With increasing pore water pressure, rock cohesion decreases and friction angle increases; under 3 MPa water pore pressure, rock cohesion decreases by 24.8%. (4) The rock's energy storage capacity decreases with increasing temperature and pore water pressure. At high pore water pressure (3 MPa), the effect of temperature on the dissipation energy of sandstone is more significant. In addition, as the temperature rises, the proportion of elastic energy at the rock's peak increases, while the proportion of dissipation energy decreases.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"28285"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12318011/pdf/","citationCount":"0","resultStr":"{\"title\":\"Experimental study on the influence of ground temperature and pore water pressure on the mechanics of excavation unloading sandstone.\",\"authors\":\"Sheng Gong, Lili Chen, Xingzhou Chen, Zhenhan Li\",\"doi\":\"10.1038/s41598-025-13761-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As tunnel engineering in western China advances deeper underground, it encounters increasing issues of high ground temperature and high water pressure. To study the mechanical properties of unloading sandstone under the combined effects of temperature and pore water pressure, triaxial unloading and reloading experiments were conducted on sandstone under different temperatures, pore water pressures, and confining pressures. The results showed: (1) The peak strength of unloading sandstone decreases with increasing temperature and pore water pressure. The elastic modulus of unloading sandstone increases with temperature but decreases with increasing pore water pressure. (2) The influence of pore water pressure on the unloading deformation of sandstone has a threshold. At low pore water pressure (1 MPa), temperature has little effect on the deformation of unloading sandstone. At medium to high pore water pressures (2, 3 MPa), temperature-induced unloading softening characteristics are obvious. (3) SEM images show that with increasing temperature, the number and width of microcracks in the rock increase. With increasing pore water pressure, rock cohesion decreases and friction angle increases; under 3 MPa water pore pressure, rock cohesion decreases by 24.8%. (4) The rock's energy storage capacity decreases with increasing temperature and pore water pressure. At high pore water pressure (3 MPa), the effect of temperature on the dissipation energy of sandstone is more significant. In addition, as the temperature rises, the proportion of elastic energy at the rock's peak increases, while the proportion of dissipation energy decreases.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"28285\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12318011/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-13761-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-13761-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

随着中国西部地区隧道工程向地下深度推进,高地温、高水压问题日益突出。为研究温度和孔隙水压力联合作用下卸载砂岩的力学特性,对不同温度、孔隙水压力和围压条件下的砂岩进行了三轴卸载和再加载试验。结果表明:(1)卸荷砂岩峰值强度随温度和孔隙水压力的升高而降低;卸载砂岩的弹性模量随温度升高而增大,随孔隙水压力的增大而减小。(2)孔隙水压力对砂岩卸荷变形的影响存在一个阈值。在低孔隙水压力(1 MPa)条件下,温度对卸荷砂岩变形影响不大。在中高孔隙水压力(2,3 MPa)下,温度诱导卸载软化特征明显。(3) SEM图像显示,随着温度的升高,岩石中微裂纹的数量和宽度增加。随着孔隙水压力的增大,岩石黏聚力减小,摩擦角增大;水孔压力为3 MPa时,岩石黏聚力降低24.8%。(4)岩石蓄能能力随温度和孔隙水压力的升高而降低。在高孔隙水压力(3 MPa)下,温度对砂岩耗散能的影响更为显著。另外,随着温度的升高,岩石峰值处弹性能所占比例增大,而耗散能所占比例减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study on the influence of ground temperature and pore water pressure on the mechanics of excavation unloading sandstone.

As tunnel engineering in western China advances deeper underground, it encounters increasing issues of high ground temperature and high water pressure. To study the mechanical properties of unloading sandstone under the combined effects of temperature and pore water pressure, triaxial unloading and reloading experiments were conducted on sandstone under different temperatures, pore water pressures, and confining pressures. The results showed: (1) The peak strength of unloading sandstone decreases with increasing temperature and pore water pressure. The elastic modulus of unloading sandstone increases with temperature but decreases with increasing pore water pressure. (2) The influence of pore water pressure on the unloading deformation of sandstone has a threshold. At low pore water pressure (1 MPa), temperature has little effect on the deformation of unloading sandstone. At medium to high pore water pressures (2, 3 MPa), temperature-induced unloading softening characteristics are obvious. (3) SEM images show that with increasing temperature, the number and width of microcracks in the rock increase. With increasing pore water pressure, rock cohesion decreases and friction angle increases; under 3 MPa water pore pressure, rock cohesion decreases by 24.8%. (4) The rock's energy storage capacity decreases with increasing temperature and pore water pressure. At high pore water pressure (3 MPa), the effect of temperature on the dissipation energy of sandstone is more significant. In addition, as the temperature rises, the proportion of elastic energy at the rock's peak increases, while the proportion of dissipation energy decreases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信