Shixin Xue, Mingxiao Li, Yueteng Zhang, Qili Hu, Zhengdong Gao, Sanket Bohora, Jeremy Staffa, Raymond Lopez-Rios, John E Bowers, Qiang Lin
{"title":"窄线宽片上III-V/TFLT激光器。","authors":"Shixin Xue, Mingxiao Li, Yueteng Zhang, Qili Hu, Zhengdong Gao, Sanket Bohora, Jeremy Staffa, Raymond Lopez-Rios, John E Bowers, Qiang Lin","doi":"10.1364/OL.566695","DOIUrl":null,"url":null,"abstract":"<p><p>We report a narrow-linewidth laser based on thin-film lithium tantalate (TFLT). The laser is composed of an InP reflective semiconductor optical amplifier gain chip hybrid integrated with a TFLT waveguide external cavity cladded with a silicon oxide extended Bragg grating. The single-frequency laser device achieves an on-chip output power of approximately 26 mW and an intrinsic Lorentzian linewidth of ~94 Hz. These results highlight the great potential of TFLT for integrated photonic laser applications, enabling high-coherence and high-power laser sources in a compact platform.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 15","pages":"4754-4757"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Narrow linewidth on-chip III-V/TFLT laser.\",\"authors\":\"Shixin Xue, Mingxiao Li, Yueteng Zhang, Qili Hu, Zhengdong Gao, Sanket Bohora, Jeremy Staffa, Raymond Lopez-Rios, John E Bowers, Qiang Lin\",\"doi\":\"10.1364/OL.566695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report a narrow-linewidth laser based on thin-film lithium tantalate (TFLT). The laser is composed of an InP reflective semiconductor optical amplifier gain chip hybrid integrated with a TFLT waveguide external cavity cladded with a silicon oxide extended Bragg grating. The single-frequency laser device achieves an on-chip output power of approximately 26 mW and an intrinsic Lorentzian linewidth of ~94 Hz. These results highlight the great potential of TFLT for integrated photonic laser applications, enabling high-coherence and high-power laser sources in a compact platform.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"50 15\",\"pages\":\"4754-4757\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.566695\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.566695","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
We report a narrow-linewidth laser based on thin-film lithium tantalate (TFLT). The laser is composed of an InP reflective semiconductor optical amplifier gain chip hybrid integrated with a TFLT waveguide external cavity cladded with a silicon oxide extended Bragg grating. The single-frequency laser device achieves an on-chip output power of approximately 26 mW and an intrinsic Lorentzian linewidth of ~94 Hz. These results highlight the great potential of TFLT for integrated photonic laser applications, enabling high-coherence and high-power laser sources in a compact platform.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.