{"title":"线粒体来源的肽MOTS-c通过增强血脑屏障的超微结构,对lps诱导的脓毒症相关脑损伤具有保护作用。","authors":"Yuanyuan Bai, Haiyan Wu, Xu Wang, Yang Guo, Bingqing Gong, Beibei Dong, Yonghao Yu","doi":"10.1080/00207454.2025.2542883","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sepsis-associated encephalopathy (SAE) is a serious complication of sepsis, increasing short-term and long-term mortality. It involves neuroinflammation, neuronal damage, and blood-brain barrier (BBB) disruption. MOTS-c, a mitochondrion-derived peptide, exerts neuroprotective effects by modulating inflammatory responses and cellular functions. This study explored the protective effects of MOTS-c against brain injury in mice with LPS-induced sepsis.</p><p><strong>Methods: </strong>A mouse model of sepsis was established <i>via</i> intraperitoneal injection of LPS. The mice were divided into four groups: Control, Control + MOTS-c, LPS, and LPS + MOTS-c groups. The mice in the latter two groups received MOTS-c (20 mg/kg) four hours before model establishment. Survival rates and the murine sepsis score (MSS) were recorded. H&E staining, ELISA, Evans blue staining, brain water content detremination, immunofluorescence staining, western blotting, and qPCR were performed to assess brain tissue damage, inflammation, BBB permeability, and BBB-related protein expression.</p><p><strong>Results: </strong>MOTS-c treatment increased the survival rate, decreased the MSS score, alleviated brain tissue damage, downregulated the expression of inflammatory factors, reversed the increase in BBB permeability, upregulated the expression of BBB-related proteins and CD31/PDGFRβ, decreased the expression of GFAP/Iba-1/MMP-9, and increased the expression of neurotrophic factors in septic mice.</p><p><strong>Conclusion: </strong>MOTS-c effectively reduced mortality rates and the MSS, attenuated neuroinflammatory responses, mitigated increase in BBB permeability, promoted neurotrophic factor production, and protecting against brain injury in mice with LPS-induced sepsis.</p>","PeriodicalId":14161,"journal":{"name":"International Journal of Neuroscience","volume":" ","pages":"1-14"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mitochondrial-derived peptide MOTS-c contributes to the protective effect against brain injury associated with LPS-induced sepsis by strengthening the blood-brain barrier's ultrastructure.\",\"authors\":\"Yuanyuan Bai, Haiyan Wu, Xu Wang, Yang Guo, Bingqing Gong, Beibei Dong, Yonghao Yu\",\"doi\":\"10.1080/00207454.2025.2542883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Sepsis-associated encephalopathy (SAE) is a serious complication of sepsis, increasing short-term and long-term mortality. It involves neuroinflammation, neuronal damage, and blood-brain barrier (BBB) disruption. MOTS-c, a mitochondrion-derived peptide, exerts neuroprotective effects by modulating inflammatory responses and cellular functions. This study explored the protective effects of MOTS-c against brain injury in mice with LPS-induced sepsis.</p><p><strong>Methods: </strong>A mouse model of sepsis was established <i>via</i> intraperitoneal injection of LPS. The mice were divided into four groups: Control, Control + MOTS-c, LPS, and LPS + MOTS-c groups. The mice in the latter two groups received MOTS-c (20 mg/kg) four hours before model establishment. Survival rates and the murine sepsis score (MSS) were recorded. H&E staining, ELISA, Evans blue staining, brain water content detremination, immunofluorescence staining, western blotting, and qPCR were performed to assess brain tissue damage, inflammation, BBB permeability, and BBB-related protein expression.</p><p><strong>Results: </strong>MOTS-c treatment increased the survival rate, decreased the MSS score, alleviated brain tissue damage, downregulated the expression of inflammatory factors, reversed the increase in BBB permeability, upregulated the expression of BBB-related proteins and CD31/PDGFRβ, decreased the expression of GFAP/Iba-1/MMP-9, and increased the expression of neurotrophic factors in septic mice.</p><p><strong>Conclusion: </strong>MOTS-c effectively reduced mortality rates and the MSS, attenuated neuroinflammatory responses, mitigated increase in BBB permeability, promoted neurotrophic factor production, and protecting against brain injury in mice with LPS-induced sepsis.</p>\",\"PeriodicalId\":14161,\"journal\":{\"name\":\"International Journal of Neuroscience\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/00207454.2025.2542883\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00207454.2025.2542883","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
A mitochondrial-derived peptide MOTS-c contributes to the protective effect against brain injury associated with LPS-induced sepsis by strengthening the blood-brain barrier's ultrastructure.
Background: Sepsis-associated encephalopathy (SAE) is a serious complication of sepsis, increasing short-term and long-term mortality. It involves neuroinflammation, neuronal damage, and blood-brain barrier (BBB) disruption. MOTS-c, a mitochondrion-derived peptide, exerts neuroprotective effects by modulating inflammatory responses and cellular functions. This study explored the protective effects of MOTS-c against brain injury in mice with LPS-induced sepsis.
Methods: A mouse model of sepsis was established via intraperitoneal injection of LPS. The mice were divided into four groups: Control, Control + MOTS-c, LPS, and LPS + MOTS-c groups. The mice in the latter two groups received MOTS-c (20 mg/kg) four hours before model establishment. Survival rates and the murine sepsis score (MSS) were recorded. H&E staining, ELISA, Evans blue staining, brain water content detremination, immunofluorescence staining, western blotting, and qPCR were performed to assess brain tissue damage, inflammation, BBB permeability, and BBB-related protein expression.
Results: MOTS-c treatment increased the survival rate, decreased the MSS score, alleviated brain tissue damage, downregulated the expression of inflammatory factors, reversed the increase in BBB permeability, upregulated the expression of BBB-related proteins and CD31/PDGFRβ, decreased the expression of GFAP/Iba-1/MMP-9, and increased the expression of neurotrophic factors in septic mice.
Conclusion: MOTS-c effectively reduced mortality rates and the MSS, attenuated neuroinflammatory responses, mitigated increase in BBB permeability, promoted neurotrophic factor production, and protecting against brain injury in mice with LPS-induced sepsis.
期刊介绍:
The International Journal of Neuroscience publishes original research articles, reviews, brief scientific reports, case studies, letters to the editor and book reviews concerned with problems of the nervous system and related clinical studies, epidemiology, neuropathology, medical and surgical treatment options and outcomes, neuropsychology and other topics related to the research and care of persons with neurologic disorders. The focus of the journal is clinical and transitional research. Topics covered include but are not limited to: ALS, ataxia, autism, brain tumors, child neurology, demyelinating diseases, epilepsy, genetics, headache, lysosomal storage disease, mitochondrial dysfunction, movement disorders, multiple sclerosis, myopathy, neurodegenerative diseases, neuromuscular disorders, neuropharmacology, neuropsychiatry, neuropsychology, pain, sleep disorders, stroke, and other areas related to the neurosciences.