Mazin Nasralla, Harrison Laurent, Oliver L G Alderman, Lorna Dougan
{"title":"用中子衍射分析钛相关氨水溶液的结构。","authors":"Mazin Nasralla, Harrison Laurent, Oliver L G Alderman, Lorna Dougan","doi":"10.1038/s42004-025-01599-8","DOIUrl":null,"url":null,"abstract":"<p><p>In 2034, NASA Dragonfly will arrive at Titan's Selk crater to study an environment where molten ice has potentially interacted with organics. Some models suggest that Titan has a sub-surface ocean enriched in ammonia, a molecule that forms a deep eutectic with water, implying that it strongly perturbs water's intermolecular structure. In anticipation of the Dragonfly mission, and to understand the effects of the addition of ammonia to liquid water, we used neutrons to probe the structure of a 20.5 wt.% ammonia-water solution at 273 K and 298 K at 1 bar. We observed the formation of ice-like motifs in ammonia's hydration shell, a result reminiscent of the 'microscopic icebergs' predicted to form around methane and non-polar solutes that were a feature of the original hypothesis for the hydrophobic effect. This result may have implications for the aqueous chemistry of Titan and ammonia-rich ocean worlds.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"227"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12318028/pdf/","citationCount":"0","resultStr":"{\"title\":\"Solution structure of Titan-relevant aqueous ammonia by neutron diffraction.\",\"authors\":\"Mazin Nasralla, Harrison Laurent, Oliver L G Alderman, Lorna Dougan\",\"doi\":\"10.1038/s42004-025-01599-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In 2034, NASA Dragonfly will arrive at Titan's Selk crater to study an environment where molten ice has potentially interacted with organics. Some models suggest that Titan has a sub-surface ocean enriched in ammonia, a molecule that forms a deep eutectic with water, implying that it strongly perturbs water's intermolecular structure. In anticipation of the Dragonfly mission, and to understand the effects of the addition of ammonia to liquid water, we used neutrons to probe the structure of a 20.5 wt.% ammonia-water solution at 273 K and 298 K at 1 bar. We observed the formation of ice-like motifs in ammonia's hydration shell, a result reminiscent of the 'microscopic icebergs' predicted to form around methane and non-polar solutes that were a feature of the original hypothesis for the hydrophobic effect. This result may have implications for the aqueous chemistry of Titan and ammonia-rich ocean worlds.</p>\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":\"8 1\",\"pages\":\"227\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12318028/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s42004-025-01599-8\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01599-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Solution structure of Titan-relevant aqueous ammonia by neutron diffraction.
In 2034, NASA Dragonfly will arrive at Titan's Selk crater to study an environment where molten ice has potentially interacted with organics. Some models suggest that Titan has a sub-surface ocean enriched in ammonia, a molecule that forms a deep eutectic with water, implying that it strongly perturbs water's intermolecular structure. In anticipation of the Dragonfly mission, and to understand the effects of the addition of ammonia to liquid water, we used neutrons to probe the structure of a 20.5 wt.% ammonia-water solution at 273 K and 298 K at 1 bar. We observed the formation of ice-like motifs in ammonia's hydration shell, a result reminiscent of the 'microscopic icebergs' predicted to form around methane and non-polar solutes that were a feature of the original hypothesis for the hydrophobic effect. This result may have implications for the aqueous chemistry of Titan and ammonia-rich ocean worlds.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.