血卟啉衍生物介导的光动力治疗后三种不同类型人肺癌细胞系细胞死亡途径的比较

IF 4.6 4区 医学 Q2 ONCOLOGY
Cancer Biology & Therapy Pub Date : 2025-12-01 Epub Date: 2025-08-02 DOI:10.1080/15384047.2025.2542011
Yijiang Ma, Baohong Xiao, Aihua Sui, Xiaohui Yang, Shichao Cui, Yiwei Cao, Cunzhi Lin
{"title":"血卟啉衍生物介导的光动力治疗后三种不同类型人肺癌细胞系细胞死亡途径的比较","authors":"Yijiang Ma, Baohong Xiao, Aihua Sui, Xiaohui Yang, Shichao Cui, Yiwei Cao, Cunzhi Lin","doi":"10.1080/15384047.2025.2542011","DOIUrl":null,"url":null,"abstract":"<p><p>This study was conducted to investigate the in vitro differences in killing effects and cellular death pathways in human bronchial epithelial BEAS-2B cells, human lung adenocarcinoma A549 cells, human lung squamous carcinoma H520 cells, and human lung small cell carcinoma H446 cells mediated by hematoporphyrin derivative (HPD) at 630 nm laser wavelength. Our results showed that the viability of the BEAS-2B, A549, H520, and H446 cells gradually decreased with increasing HPD concentration after HPD-PDT. HPD-PDT induced an increase in intracellular ROS production (<i>p</i> < 0.05), with H520 > A549 > H446 > BEAS-2B. HPD-PDT resulted in intracellular chromatin fixation and dense nuclear staining and induced apoptosis, with apoptosis rates of H520 > A549 > H446 > BEAS-2B. The western blotting (WB) results showed that HPD-PDT could lead to reduced BCL-2 protein levels, upregulate BAX protein expression and activate caspase-3 protein, and induce autophagy, as evidenced by the increased expression of the autophagy-related proteins ATG5, Beclin-1 and LC3B in all cells tested. However, apoptosis-inducing proteins and autophagy proteins were statistically different in these four cell types. Our study confirms that HPD-mediated phototoxicity varied in the different cell lines, indicating that lung cancer cells die due to the interactions of different cell death pathways rather than the same well-defined mechanisms.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2542011"},"PeriodicalIF":4.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320871/pdf/","citationCount":"0","resultStr":"{\"title\":\"A comparison of cell death pathways in three different kinds of human lung cancer cell lines following hematoporphyrin derivative-mediated photodynamic therapy.\",\"authors\":\"Yijiang Ma, Baohong Xiao, Aihua Sui, Xiaohui Yang, Shichao Cui, Yiwei Cao, Cunzhi Lin\",\"doi\":\"10.1080/15384047.2025.2542011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study was conducted to investigate the in vitro differences in killing effects and cellular death pathways in human bronchial epithelial BEAS-2B cells, human lung adenocarcinoma A549 cells, human lung squamous carcinoma H520 cells, and human lung small cell carcinoma H446 cells mediated by hematoporphyrin derivative (HPD) at 630 nm laser wavelength. Our results showed that the viability of the BEAS-2B, A549, H520, and H446 cells gradually decreased with increasing HPD concentration after HPD-PDT. HPD-PDT induced an increase in intracellular ROS production (<i>p</i> < 0.05), with H520 > A549 > H446 > BEAS-2B. HPD-PDT resulted in intracellular chromatin fixation and dense nuclear staining and induced apoptosis, with apoptosis rates of H520 > A549 > H446 > BEAS-2B. The western blotting (WB) results showed that HPD-PDT could lead to reduced BCL-2 protein levels, upregulate BAX protein expression and activate caspase-3 protein, and induce autophagy, as evidenced by the increased expression of the autophagy-related proteins ATG5, Beclin-1 and LC3B in all cells tested. However, apoptosis-inducing proteins and autophagy proteins were statistically different in these four cell types. Our study confirms that HPD-mediated phototoxicity varied in the different cell lines, indicating that lung cancer cells die due to the interactions of different cell death pathways rather than the same well-defined mechanisms.</p>\",\"PeriodicalId\":9536,\"journal\":{\"name\":\"Cancer Biology & Therapy\",\"volume\":\"26 1\",\"pages\":\"2542011\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320871/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biology & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15384047.2025.2542011\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2025.2542011","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本实验旨在探讨血卟啉衍生物(HPD)在630 nm激光波长下对人支气管上皮BEAS-2B细胞、人肺腺癌A549细胞、人肺鳞癌H520细胞和人肺小细胞癌H446细胞杀伤效果和细胞死亡途径的体外差异。结果表明,经HPD- pdt后,BEAS-2B、A549、H520和H446细胞的活力随着HPD浓度的增加而逐渐降低。HPD-PDT诱导细胞内ROS生成增加(p A549 > H446 > BEAS-2B)。HPD-PDT导致细胞内染色质固定和致密核染色,并诱导细胞凋亡,凋亡率为H520 > A549 > H446 > BEAS-2B。western blotting (WB)结果显示,HPD-PDT可导致BCL-2蛋白水平降低,BAX蛋白表达上调,激活caspase-3蛋白,诱导自噬,自噬相关蛋白ATG5、Beclin-1和LC3B在所有细胞中表达升高。然而,凋亡诱导蛋白和自噬蛋白在这四种细胞类型中有统计学差异。我们的研究证实,hpd介导的光毒性在不同细胞系中存在差异,表明肺癌细胞的死亡是由于不同细胞死亡途径的相互作用,而不是相同的明确机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of cell death pathways in three different kinds of human lung cancer cell lines following hematoporphyrin derivative-mediated photodynamic therapy.

This study was conducted to investigate the in vitro differences in killing effects and cellular death pathways in human bronchial epithelial BEAS-2B cells, human lung adenocarcinoma A549 cells, human lung squamous carcinoma H520 cells, and human lung small cell carcinoma H446 cells mediated by hematoporphyrin derivative (HPD) at 630 nm laser wavelength. Our results showed that the viability of the BEAS-2B, A549, H520, and H446 cells gradually decreased with increasing HPD concentration after HPD-PDT. HPD-PDT induced an increase in intracellular ROS production (p < 0.05), with H520 > A549 > H446 > BEAS-2B. HPD-PDT resulted in intracellular chromatin fixation and dense nuclear staining and induced apoptosis, with apoptosis rates of H520 > A549 > H446 > BEAS-2B. The western blotting (WB) results showed that HPD-PDT could lead to reduced BCL-2 protein levels, upregulate BAX protein expression and activate caspase-3 protein, and induce autophagy, as evidenced by the increased expression of the autophagy-related proteins ATG5, Beclin-1 and LC3B in all cells tested. However, apoptosis-inducing proteins and autophagy proteins were statistically different in these four cell types. Our study confirms that HPD-mediated phototoxicity varied in the different cell lines, indicating that lung cancer cells die due to the interactions of different cell death pathways rather than the same well-defined mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Biology & Therapy
Cancer Biology & Therapy 医学-肿瘤学
CiteScore
7.00
自引率
0.00%
发文量
60
审稿时长
2.3 months
期刊介绍: Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信